9,259 research outputs found

    Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

    Full text link
    Dynamic programming on various graph decompositions is one of the most fundamental techniques used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or tree decompositions, such dynamic programming uses space that is exponential in the decomposition's width, and there are good reasons to believe that this is necessary. However, it has been shown that in graphs of low treedepth it is possible to design algorithms which achieve polynomial space complexity without requiring worse time complexity than their counterparts working on tree decompositions of bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account both the depth and the width of a tree decomposition of the graph, rather than the width alone. Motivated by the above, we consider graphs that admit clique expressions with bounded depth and label count, or equivalently, graphs of low shrubdepth (sd). Here, sd is a bounded-depth analogue of cliquewidth, in the same way as td is a bounded-depth analogue of treewidth. We show that also in this setting, bounding the depth of the decomposition is a deciding factor for improving the space complexity. Precisely, we prove that on nn-vertex graphs equipped with a tree-model (a decomposition notion underlying sd) of depth dd and using kk labels, we can solve - Independent Set in time 2O(dk)nO(1)2^{O(dk)}\cdot n^{O(1)} using O(dk2logn)O(dk^2\log n) space; - Max Cut in time nO(dk)n^{O(dk)} using O(dklogn)O(dk\log n) space; and - Dominating Set in time 2O(dk)nO(1)2^{O(dk)}\cdot n^{O(1)} using nO(1)n^{O(1)} space via a randomized algorithm. We also establish a lower bound, conditional on a certain assumption about the complexity of Longest Common Subsequence, which shows that at least in the case of IS the exponent of the parametric factor in the time complexity has to grow with dd if one wishes to keep the space complexity polynomial.Comment: Conference version to appear at the European Symposium on Algorithms (ESA 2023

    Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

    Get PDF
    Dynamic programming on various graph decompositions is one of the most fundamental techniques used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or tree decompositions, such dynamic programming uses space that is exponential in the decomposition's width, and there are good reasons to believe that this is necessary. However, it has been shown that in graphs of low treedepth it is possible to design algorithms which achieve polynomial space complexity without requiring worse time complexity than their counterparts working on tree decompositions of bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account both the depth and the width of a tree decomposition of the graph, rather than the width alone. Motivated by the above, we consider graphs that admit clique expressions with bounded depth and label count, or equivalently, graphs of low shrubdepth (sd). Here, sd is a bounded-depth analogue of cliquewidth, in the same way as td is a bounded-depth analogue of treewidth. We show that also in this setting, bounding the depth of the decomposition is a deciding factor for improving the space complexity. Precisely, we prove that on n-vertex graphs equipped with a tree-model (a decomposition notion underlying sd) of depth d and using k labels, we can solve - Independent Set in time 2O(dk)⋅nO(1) using O(dk2logn) space; - Max Cut in time nO(dk) using O(dklogn) space; and - Dominating Set in time 2O(dk)⋅nO(1) using nO(1) space via a randomized algorithm. We also establish a lower bound, conditional on a certain assumption about the complexity of Longest Common Subsequence, which shows that at least in the case of IS the exponent of the parametric factor in the time complexity has to grow with d if one wishes to keep the space complexity polynomial

    Low Diameter Graph Decompositions by Approximate Distance Computation

    Get PDF
    In many models for large-scale computation, decomposition of the problem is key to efficient algorithms. For distance-related graph problems, it is often crucial that such a decomposition results in clusters of small diameter, while the probability that an edge is cut by the decomposition scales linearly with the length of the edge. There is a large body of literature on low diameter graph decomposition with small edge cutting probabilities, with all existing techniques heavily building on single source shortest paths (SSSP) computations. Unfortunately, in many theoretical models for large-scale computations, the SSSP task constitutes a complexity bottleneck. Therefore, it is desirable to replace exact SSSP computations with approximate ones. However this imposes a fundamental challenge since the existing constructions of low diameter graph decomposition with small edge cutting probabilities inherently rely on the subtractive form of the triangle inequality, which fails to hold under distance approximation. The current paper overcomes this obstacle by developing a technique termed blurry ball growing. By combining this technique with a clever algorithmic idea of Miller et al. (SPAA 2013), we obtain a construction of low diameter decompositions with small edge cutting probabilities which replaces exact SSSP computations by (a small number of) approximate ones. The utility of our approach is showcased by deriving efficient algorithms that work in the CONGEST, PRAM, and semi-streaming models of computation. As an application, we obtain metric tree embedding algorithms in the vein of Bartal (FOCS 1996) whose computational complexities in these models are optimal up to polylogarithmic factors. Our embeddings have the additional useful property that the tree can be mapped back to the original graph such that each edge is "used" only logaritmically many times, which is of interest for capacitated problems and simulating CONGEST algorithms on the tree into which the graph is embedded

    Parallel Graph Decompositions Using Random Shifts

    Full text link
    We show an improved parallel algorithm for decomposing an undirected unweighted graph into small diameter pieces with a small fraction of the edges in between. These decompositions form critical subroutines in a number of graph algorithms. Our algorithm builds upon the shifted shortest path approach introduced in [Blelloch, Gupta, Koutis, Miller, Peng, Tangwongsan, SPAA 2011]. By combining various stages of the previous algorithm, we obtain a significantly simpler algorithm with the same asymptotic guarantees as the best sequential algorithm

    Grad and classes with bounded expansion I. decompositions

    Full text link
    We introduce classes of graphs with bounded expansion as a generalization of both proper minor closed classes and degree bounded classes. Such classes are based on a new invariant, the greatest reduced average density (grad) of G with rank r, grad r(G). For these classes we prove the existence of several partition results such as the existence of low tree-width and low tree-depth colorings. This generalizes and simplifies several earlier results (obtained for minor closed classes)

    Space Saving by Dynamic Algebraization

    Full text link
    Dynamic programming is widely used for exact computations based on tree decompositions of graphs. However, the space complexity is usually exponential in the treewidth. We study the problem of designing efficient dynamic programming algorithm based on tree decompositions in polynomial space. We show how to construct a tree decomposition and extend the algebraic techniques of Lokshtanov and Nederlof such that the dynamic programming algorithm runs in time O(2h)O^*(2^h), where hh is the maximum number of vertices in the union of bags on the root to leaf paths on a given tree decomposition, which is a parameter closely related to the tree-depth of a graph. We apply our algorithm to the problem of counting perfect matchings on grids and show that it outperforms other polynomial-space solutions. We also apply the algorithm to other set covering and partitioning problems.Comment: 14 pages, 1 figur

    A Faster Parameterized Algorithm for Treedepth

    Full text link
    The width measure \emph{treedepth}, also known as vertex ranking, centered coloring and elimination tree height, is a well-established notion which has recently seen a resurgence of interest. We present an algorithm which---given as input an nn-vertex graph, a tree decomposition of the graph of width ww, and an integer tt---decides Treedepth, i.e. whether the treedepth of the graph is at most tt, in time 2O(wt)n2^{O(wt)} \cdot n. If necessary, a witness structure for the treedepth can be constructed in the same running time. In conjunction with previous results we provide a simple algorithm and a fast algorithm which decide treedepth in time 22O(t)n2^{2^{O(t)}} \cdot n and 2O(t2)n2^{O(t^2)} \cdot n, respectively, which do not require a tree decomposition as part of their input. The former answers an open question posed by Ossona de Mendez and Nesetril as to whether deciding Treedepth admits an algorithm with a linear running time (for every fixed tt) that does not rely on Courcelle's Theorem or other heavy machinery. For chordal graphs we can prove a running time of 2O(tlogt)n2^{O(t \log t)}\cdot n for the same algorithm.Comment: An extended abstract was published in ICALP 2014, Track
    corecore