6,201 research outputs found

    Essential Constraints of Edge-Constrained Proximity Graphs

    Full text link
    Given a plane forest F=(V,E)F = (V, E) of V=n|V| = n points, we find the minimum set SES \subseteq E of edges such that the edge-constrained minimum spanning tree over the set VV of vertices and the set SS of constraints contains FF. We present an O(nlogn)O(n \log n )-time algorithm that solves this problem. We generalize this to other proximity graphs in the constraint setting, such as the relative neighbourhood graph, Gabriel graph, β\beta-skeleton and Delaunay triangulation. We present an algorithm that identifies the minimum set SES\subseteq E of edges of a given plane graph I=(V,E)I=(V,E) such that ICGβ(V,S)I \subseteq CG_\beta(V, S) for 1β21 \leq \beta \leq 2, where CGβ(V,S)CG_\beta(V, S) is the constraint β\beta-skeleton over the set VV of vertices and the set SS of constraints. The running time of our algorithm is O(n)O(n), provided that the constrained Delaunay triangulation of II is given.Comment: 24 pages, 22 figures. A preliminary version of this paper appeared in the Proceedings of 27th International Workshop, IWOCA 2016, Helsinki, Finland. It was published by Springer in the Lecture Notes in Computer Science (LNCS) serie

    Connected Spatial Networks over Random Points and a Route-Length Statistic

    Full text link
    We review mathematically tractable models for connected networks on random points in the plane, emphasizing the class of proximity graphs which deserves to be better known to applied probabilists and statisticians. We introduce and motivate a particular statistic RR measuring shortness of routes in a network. We illustrate, via Monte Carlo in part, the trade-off between normalized network length and RR in a one-parameter family of proximity graphs. How close this family comes to the optimal trade-off over all possible networks remains an intriguing open question. The paper is a write-up of a talk developed by the first author during 2007--2009.Comment: Published in at http://dx.doi.org/10.1214/10-STS335 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

    Get PDF
    A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is xx- and yy-monotone. Angle-monotone graphs are 2\sqrt 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-θ6\theta_6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex ss to any vertex tt whose length is within 1+21 + \sqrt 2 times the Euclidean distance from ss to tt. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore