29 research outputs found

    A convergent relaxation of the Douglas-Rachford algorithm

    Full text link
    This paper proposes an algorithm for solving structured optimization problems, which covers both the backward-backward and the Douglas-Rachford algorithms as special cases, and analyzes its convergence. The set of fixed points of the algorithm is characterized in several cases. Convergence criteria of the algorithm in terms of general fixed point operators are established. When applying to nonconvex feasibility including the inconsistent case, we prove local linear convergence results under mild assumptions on regularity of individual sets and of the collection of sets which need not intersect. In this special case, we refine known linear convergence criteria for the Douglas-Rachford algorithm (DR). As a consequence, for feasibility with one of the sets being affine, we establish criteria for linear and sublinear convergence of convex combinations of the alternating projection and the DR methods. These results seem to be new. We also demonstrate the seemingly improved numerical performance of this algorithm compared to the RAAR algorithm for both consistent and inconsistent sparse feasibility problems

    A Note on the Finite Convergence of Alternating Projections

    Full text link
    We establish sufficient conditions for finite convergence of the alternating projections method for two non-intersecting and potentially nonconvex sets. Our results are based on a generalization of the concept of intrinsic transversality, which until now has been restricted to sets with nonempty intersection. In the special case of a polyhedron and closed half space, our sufficient conditions define the minimum distance between the two sets that is required for alternating projections to converge in a single iteration.Comment: 9 pages, 7 figure

    Error Bounds and Holder Metric Subregularity

    Get PDF
    The Holder setting of the metric subregularity property of set-valued mappings between general metric or Banach/Asplund spaces is investigated in the framework of the theory of error bounds for extended real-valued functions of two variables. A classification scheme for the general Holder metric subregularity criteria is presented. The criteria are formulated in terms of several kinds of primal and subdifferential slopes.Comment: 32 pages. arXiv admin note: substantial text overlap with arXiv:1405.113
    corecore