1,100 research outputs found

    On Linear Cryptanalysis with Many Linear Approximations

    Get PDF
    In this paper we present a theoretical framework to quantify the information brought by several linear approximations of a block-cipher without putting any restriction on these approximations. We quantify here the entropy of the key given the plaintext-ciphertext pairs statistics which is a much more accurate measure than the ones studied earlier. The techniques which are developed here apply to various ways of performing the linear attack and can also been used to measure the entropy of the key for other statistical attacks. Moreover, we present a realistic attack on the full DES with a time complexity of 2482^{48} for 2412^{41} pairs what is a big improvement comparing to Matsui\u27s algorithm 2 (251.92^{51.9})

    Linear Hulls with Correlation Zero and Linear Cryptanalysis of Block Ciphers

    Get PDF
    Linear cryptanalysis, along with differential cryptanalysis, is an important tool to evaluate the security of block ciphers. This work introduces a novel extension of linear cryptanalysis: zero-correlation linear cryptanalysis, a technique applicable to many block cipher constructions. It is based on linear approximations with a correlation value of exactly zero. For a permutation on nn bits, an algorithm of complexity 2n12^{n-1} is proposed for the exact evaluation of correlation. Non-trivial zero-correlation linear approximations are demonstrated for various block cipher structures including AES, balanced Feistel networks, Skipjack, CLEFIA, and CAST256. As an example, using the zero-correlation linear cryptanalysis, a key-recovery attack is shown on 6 rounds of AES-192 and AES-256 as well as 13 rounds of CLEFIA-256

    Multidimensional linear cryptanalysis

    Get PDF
    Linear cryptanalysis is an important tool for studying the security of symmetric ciphers. In 1993 Matsui proposed two algorithms, called Algorithm 1 and Algorithm 2, for recovering information about the secret key of a block cipher. The algorithms exploit a biased probabilistic relation between the input and output of the cipher. This relation is called the (one-dimensional) linear approximation of the cipher. Mathematically, the problem of key recovery is a binary hypothesis testing problem that can be solved with appropriate statistical tools. The same mathematical tools can be used for realising a distinguishing attack against a stream cipher. The distinguisher outputs whether the given sequence of keystream bits is derived from a cipher or a random source. Sometimes, it is even possible to recover a part of the initial state of the LFSR used in a key stream generator. Several authors considered using many one-dimensional linear approximations simultaneously in a key recovery attack and various solutions have been proposed. In this thesis a unified methodology for using multiple linear approximations in distinguishing and key recovery attacks is presented. This methodology, which we call multidimensional linear cryptanalysis, allows removing unnecessary and restrictive assumptions. We model the key recovery problems mathematically as hypothesis testing problems and show how to use standard statistical tools for solving them. We also show how the data complexity of linear cryptanalysis on stream ciphers and block ciphers can be reduced by using multiple approximations. We use well-known mathematical theory for comparing different statistical methods for solving the key recovery problems. We also test the theory in practice with reduced round Serpent. Based on our results, we give recommendations on how multidimensional linear cryptanalysis should be used

    Improved Linear Cryptanalysis of SOSEMANUK

    Full text link
    Abstract. The SOSEMANUK stream cipher is one of the finalists of the eSTREAM project. In this paper, we improve the linear cryptanalysis of SOSEMANUK presented in Asiacrypt 2008. We apply the generalized linear masking technique to SOSEMANUK and derive many linear approximations holding with the correlations of up to 2 −25.5. We show that the data complexity of the linear attack on SOSEMANUK can be reduced by a factor of 2 10 if multiple linear approximations are used. Since SOSEMANUK claims 128-bit security, our attack would not be a real threat on the security of SOSEMANUK. Keywords: Stream Ciphers, Linear Cryptanalysis, SOSEMANUK, SOBER-128.

    Linear Cryptanalysis of DES with Asymmetries

    Get PDF
    Linear cryptanalysis of DES, proposed by Matsui in 1993, has had a seminal impact on symmetric-key cryptography, having seen massive research efforts over the past two decades. It has spawned many variants, including multidimensional and zero-correlation linear cryptanalysis. These variants can claim best attacks on several ciphers, including PRESENT, Serpent, and CLEFIA. For DES, none of these variants have improved upon Matsui\u27s original linear cryptanalysis, which has been the best known-plaintext key-recovery attack on the cipher ever since. In a revisit, Junod concluded that when using 2432^{43} known plaintexts, this attack has a complexity of 2412^{41} DES evaluations. His analysis relies on the standard assumptions of right-key equivalence and wrong-key randomisation. In this paper, we first investigate the validity of these fundamental assumptions when applied to DES. For the right key, we observe that strong linear approximations of DES have more than just one dominant trail and, thus, that the right keys are in fact inequivalent with respect to linear correlation. We therefore develop a new right-key model using Gaussian mixtures for approximations with several dominant trails. For the wrong key, we observe that the correlation of a strong approximation after the partial decryption with a wrong key still shows much non-randomness. To remedy this, we propose a novel wrong-key model that expresses the wrong-key linear correlation using a version of DES with more rounds. We extend the two models to the general case of multiple approximations, propose a likelihood-ratio classifier based on this generalisation, and show that it performs better than the classical Bayesian classifier. On the practical side, we find that the distributions of right-key correlations for multiple linear approximations of DES exhibit exploitable asymmetries. In particular, not all sign combinations in the correlation values are possible. This results in our improved multiple linear attack on DES using 4 linear approximations at a time. The lowest computational complexity of 238.862^{38.86} DES evaluations is achieved when using 242.782^{42.78} known plaintexts. Alternatively, using 2412^{41} plaintexts results in a computational complexity of 249.752^{49.75} DES evaluations. We perform practical experiments to confirm our model. To our knowledge, this is the best attack on DES

    Multidimensional Zero-Correlation Linear Cryptanalysis of the Block Cipher KASUMI

    Full text link
    The block cipher KASUMI is widely used for security in many synchronous wireless standards. It was proposed by ETSI SAGE for usage in 3GPP (3rd Generation Partnership Project) ciphering algorthms in 2001. There are a great deal of cryptanalytic results on KASUMI, however, its security evaluation against the recent zero-correlation linear attacks is still lacking so far. In this paper, we select some special input masks to refine the general 5-round zero-correlation linear approximations combining with some observations on the FLFL functions and then propose the 6-round zero-correlation linear attack on KASUMI. Moreover, zero-correlation linear attacks on the last 7-round KASUMI are also introduced under some weak keys conditions. These weak keys take 2142^{-14} of the whole key space. The new zero-correlation linear attack on the 6-round needs about 2852^{85} encryptions with 262.82^{62.8} known plaintexts. For the attack under weak keys conditions on the last 7 round, the data complexity is about 262.12^{62.1} known plaintexts and the time complexity 2110.52^{110.5} encryptions
    corecore