4,448 research outputs found

    Learning circuits with few negations

    Get PDF
    Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been intensively studied in complexity theory. In this paper we study the structure of Boolean functions in terms of the minimum number of negations in any circuit computing them, a complexity measure that interpolates between monotone functions and the class of all functions. We study this generalization of monotonicity from the vantage point of learning theory, giving near-matching upper and lower bounds on the uniform-distribution learnability of circuits in terms of the number of negations they contain. Our upper bounds are based on a new structural characterization of negation-limited circuits that extends a classical result of A. A. Markov. Our lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results even for circuits with no negations (i.e. monotone functions)

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [−1,1][-1,1]-valued dd-resilient function in ℓ1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between ℓ1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that ℓ1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas

    Dualisation, decision lists and identification of monotone discrete functions

    Get PDF
    Many data-analysis algorithms in machine learning, datamining and a variety of other disciplines essentially operate on discrete multi-attribute data sets. By means of discretisation or binarisation also numerical data sets can be successfully analysed. Therefore, in this paper we view/introduce the theory of (partially defined) discrete functions as an important theoretical tool for the analysis of multi-attribute data sets. In particular we study monotone (partially defined) discrete functions. Compared with the theory of Boolean functions relatively little is known about (partially defined) monotone discrete functions. It appears that decision lists are useful for the representation of monotone discrete functions. Since dualisation is an important tool in the theory of (monotone) Boolean functions, we study the interpretation and properties of the dual of a (monotone) binary or discrete function. We also introduce the dual of a pseudo-Boolean function. The results are used to investigate extensions of partially defined monotone discrete functions and the identification of monotone discrete functions. In particular we present a polynomial time algorithm for the identification of so-called stable discrete functions

    Learning Circuits with few Negations

    Get PDF
    Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been intensively studied in complexity theory. In this paper we study the structure of Boolean functions in terms of the minimum number of negations in any circuit computing them, a complexity measure that interpolates between monotone functions and the class of all functions. We study this generalization of monotonicity from the vantage point of learning theory, establishing nearly matching upper and lower bounds on the uniform-distribution learnability of circuits in terms of the number of negations they contain. Our upper bounds are based on a new structural characterization of negation-limited circuits that extends a classical result of A.A. Markov. Our lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results even for circuits with no negations (i.e. monotone functions)

    Data mining and knowledge discovery: a guided approach base on monotone boolean functions

    Get PDF
    This dissertation deals with an important problem in Data Mining and Knowledge Discovery (DM & KD), and Information Technology (IT) in general. It addresses the problem of efficiently learning monotone Boolean functions via membership queries to oracles. The monotone Boolean function can be thought of as a phenomenon, such as breast cancer or a computer crash, together with a set of predictor variables. The oracle can be thought of as an entity that knows the underlying monotone Boolean function, and provides a Boolean response to each query. In practice, it may take the shape of a human expert, or it may be the outcome of performing tasks such as running experiments or searching large databases. Monotone Boolean functions have a general knowledge representation power and are inherently frequent in applications. A key goal of this dissertation is to demonstrate the wide spectrum of important real-life applications that can be analyzed by using the new proposed computational approaches. The applications of breast cancer diagnosis, computer crashing, college acceptance policies, and record linkage in databases are here used to demonstrate this point and illustrate the algorithmic details. Monotone Boolean functions have the added benefit of being intuitive. This property is perhaps the most important in learning environments, especially when human interaction is involved, since people tend to make better use of knowledge they can easily interpret, understand, validate, and remember. The main goal of this dissertation is to design new algorithms that can minimize the average number of queries used to completely reconstruct monotone Boolean functions defined on a finite set of vectors V = {0,1}^n. The optimal query selections are found via a recursive algorithm in exponential time (in the size of V). The optimality conditions are then summarized in the simple form of evaluative criteria, which are near optimal and only take polynomial time to compute. Extensive unbiased empirical results show that the evaluative criterion approach is far superior to any of the existing methods. In fact, the reduction in average number of queries increases exponentially with the number of variables n, and faster than exponentially with the oracle\u27s error rate

    Agnostic proper learning of monotone functions: beyond the black-box correction barrier

    Full text link
    We give the first agnostic, efficient, proper learning algorithm for monotone Boolean functions. Given 2O~(n/ε)2^{\tilde{O}(\sqrt{n}/\varepsilon)} uniformly random examples of an unknown function f:{±1}n→{±1}f:\{\pm 1\}^n \rightarrow \{\pm 1\}, our algorithm outputs a hypothesis g:{±1}n→{±1}g:\{\pm 1\}^n \rightarrow \{\pm 1\} that is monotone and (opt+ε)(\mathrm{opt} + \varepsilon)-close to ff, where opt\mathrm{opt} is the distance from ff to the closest monotone function. The running time of the algorithm (and consequently the size and evaluation time of the hypothesis) is also 2O~(n/ε)2^{\tilde{O}(\sqrt{n}/\varepsilon)}, nearly matching the lower bound of Blais et al (RANDOM '15). We also give an algorithm for estimating up to additive error ε\varepsilon the distance of an unknown function ff to monotone using a run-time of 2O~(n/ε)2^{\tilde{O}(\sqrt{n}/\varepsilon)}. Previously, for both of these problems, sample-efficient algorithms were known, but these algorithms were not run-time efficient. Our work thus closes this gap in our knowledge between the run-time and sample complexity. This work builds upon the improper learning algorithm of Bshouty and Tamon (JACM '96) and the proper semiagnostic learning algorithm of Lange, Rubinfeld, and Vasilyan (FOCS '22), which obtains a non-monotone Boolean-valued hypothesis, then ``corrects'' it to monotone using query-efficient local computation algorithms on graphs. This black-box correction approach can achieve no error better than 2opt+ε2\mathrm{opt} + \varepsilon information-theoretically; we bypass this barrier by a) augmenting the improper learner with a convex optimization step, and b) learning and correcting a real-valued function before rounding its values to Boolean. Our real-valued correction algorithm solves the ``poset sorting'' problem of [LRV22] for functions over general posets with non-Boolean labels

    Testing k-Monotonicity

    Get PDF
    A Boolean k-monotone function defined over a finite poset domain D alternates between the values 0 and 1 at most k times on any ascending chain in D. Therefore, k-monotone functions are natural generalizations of the classical monotone functions, which are the 1-monotone functions. Motivated by the recent interest in k-monotone functions in the context of circuit complexity and learning theory, and by the central role that monotonicity testing plays in the context of property testing, we initiate a systematic study of k-monotone functions, in the property testing model. In this model, the goal is to distinguish functions that are k-monotone (or are close to being k-monotone) from functions that are far from being k-monotone. Our results include the following: 1. We demonstrate a separation between testing k-monotonicity and testing monotonicity, on the hypercube domain {0,1}^d, for k >= 3; 2. We demonstrate a separation between testing and learning on {0,1}^d, for k=omega(log d): testing k-monotonicity can be performed with 2^{O(sqrt d . log d . log{1/eps})} queries, while learning k-monotone functions requires 2^{Omega(k . sqrt d .{1/eps})} queries (Blais et al. (RANDOM 2015)). 3. We present a tolerant test for functions fcolon[n]^dto {0,1}$with complexity independent of n, which makes progress on a problem left open by Berman et al. (STOC 2014). Our techniques exploit the testing-by-learning paradigm, use novel applications of Fourier analysis on the grid [n]^d, and draw connections to distribution testing techniques. Our techniques exploit the testing-by-learning paradigm, use novel applications of Fourier analysis on the grid [n]^d, and draw connections to distribution testing techniques
    • …
    corecore