2 research outputs found

    Efficient simulation and integrated likelihood estimation in state space models

    Get PDF
    We consider the problem of implementing simple and efficient Markov chain Monte Carlo (MCMC) estimation algorithms for state space models. A conceptually transparent derivation of the posterior distribution of the states is discussed, which also leads to an efficient simulation algorithm that is modular, scalable and widely applicable. We also discuss a simple approach for evaluating the integrated likelihood, defined as the density of the data given the parameters but marginal of the state vector. We show that this high-dimensional integral can be easily evaluated with minimal computational and conceptual difficulty. Two empirical applications in macroeconomics demonstrate that the methods are versatile and computationally undemanding. In one application, involving a time-varying parameter model, we show that the methods allow for efficient handling of large state vectors. In our second application, involving a dynamic factor model, we introduce a new blocking strategy which results in improved MCMC mixing at little cost. The results demonstrate that the framework is simple, flexible and efficient

    On Kalman filter solution of space-time interpolation

    No full text
    corecore