2,087 research outputs found

    Second-Order Asymptotics for the Discrete Memoryless MAC with Degraded Message Sets

    Get PDF
    This paper studies the second-order asymptotics of the discrete memoryless multiple-access channel with degraded message sets. For a fixed average error probability ϵ∈(0,1)\epsilon\in(0,1) and an arbitrary point on the boundary of the capacity region, we characterize the speed of convergence of rate pairs that converge to that point for codes that have asymptotic error probability no larger than ϵ\epsilon, thus complementing an analogous result given previously for the Gaussian setting.Comment: 5 Pages, 1 Figure. Follow-up paper of http://arxiv.org/abs/1310.1197. Accepted to ISIT 201

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    Understanding interdependency through complex information sharing

    Full text link
    The interactions between three or more random variables are often nontrivial, poorly understood, and yet, are paramount for future advances in fields such as network information theory, neuroscience, genetics and many others. In this work, we propose to analyze these interactions as different modes of information sharing. Towards this end, we introduce a novel axiomatic framework for decomposing the joint entropy, which characterizes the various ways in which random variables can share information. The key contribution of our framework is to distinguish between interdependencies where the information is shared redundantly, and synergistic interdependencies where the sharing structure exists in the whole but not between the parts. We show that our axioms determine unique formulas for all the terms of the proposed decomposition for a number of cases of interest. Moreover, we show how these results can be applied to several network information theory problems, providing a more intuitive understanding of their fundamental limits.Comment: 39 pages, 4 figure

    Monotonicity Results for Coherent MIMO Rician Channels

    Full text link
    The dependence of the Gaussian input information rate on the line-of-sight (LOS) matrix in multiple-input multiple-output coherent Rician fading channels is explored. It is proved that the outage probability and the mutual information induced by a multivariate circularly symmetric Gaussian input with any covariance matrix are monotonic in the LOS matrix D, or more precisely, monotonic in D'D in the sense of the Loewner partial order. Conversely, it is also demonstrated that this ordering on the LOS matrices is a necessary condition for the uniform monotonicity over all input covariance matrices. This result is subsequently applied to prove the monotonicity of the isotropic Gaussian input information rate and channel capacity in the singular values of the LOS matrix. Extensions to multiple-access channels are also discussed.Comment: 14 pages, submitted to IEEE Transactions on Information Theor
    • …
    corecore