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Abstract—This paper studies the second-order asymptotics of
the discrete memoryless multiple-access channel with degraded
message sets. For a fixed average error probability ε ∈ (0, 1) and
an arbitrary point on the boundary of the capacity region, we
characterize the speed of convergence of rate pairs that converge
to that point for codes that have asymptotic error probability
no larger than ε, thus complementing an analogous result given
previously for the Gaussian setting.

I. INTRODUCTION

In recent years, there has been great interest in characteriz-
ing the fixed-error asymptotics (e.g. dispersion, the Gaussian
approximation) of source coding and channel coding problems,
and the behavior is well-understood for a variety of single-user
settings [1]–[3]. On the other hand, analogous studies of multi-
user problems have generally had significantly less success,
with the main exceptions being Slepian-Wolf coding [4], [5],
the Gaussian interference channel with strictly very strong
interference [6], and the Gaussian multiple-access channel
(MAC) with degraded message sets [7].

In this paper, we complement our work on the latter problem
by considering its discrete counterpart. By obtaining matching
achievability and converse results, we provide the first com-
plete characterization of the second-order asymptotics for a
discrete channel-type network information theory problem.

A. System Setup
We consider the two-user discrete memoryless MAC (DM-

MAC) with degraded message sets [8, Ex. 5.18], with input
alphabets X1 and X2 and output alphabet Y . As usual,
there are two messages m1 and m2, equiprobable on the
sets {1, . . . ,M1} and {1, . . . ,M2} respectively. The first
user knows both messages, whereas the second user only
knows m2. Given these messages, the users transmit the
codewords x1(m1,m2) and x2(m2) from their respective
codebooks, and the decoder receives a noisy output sequence
which is generated according to the memoryless transition
law Wn(y|x1,x2) =

∏n
i=1W (yi|x1,i, x2,i). An estimate

(m̂1, m̂2) is formed, and an error is said to have occurred
if (m̂1, m̂2) 6= (m1,m2).

The capacity region C is given by the set of rate pairs
(R1, R2) satisfying [8, Ex. 5.18]

R1 ≤ I(X1;Y |X2) (1)
R1 +R2 ≤ I(X1, X2;Y ) (2)

for some input joint distribution PX1X2
, where the

mutual information quantities are with respect to
PX1X2(x1, x2)W (y|x1, x2). The achievability part is
proved using superposition coding.

We formulate the second-order asymptotics according to the
following definition [5].

Definition 1 (Second-Order Coding Rates). Fix ε ∈ (0, 1), and
let (R∗1, R

∗
2) be a pair of rates on the boundary of C. A pair

(L1, L2) is (ε,R∗1, R
∗
2)-achievable if there exists a sequence

of codes with length n, number of codewords for message
j = 1, 2 equal to Mj,n, and average error probability εn,
such that

lim inf
n→∞

1√
n

(logMj,n − nR∗j ) ≥ Lj , j = 1, 2, (3)

lim sup
n→∞

εn ≤ ε. (4)

The (ε,R∗1, R
∗
2)-optimal second-order coding rate region

L(ε;R∗1, R
∗
2) ⊂ R2 is defined to be the closure of the set

of all (ε,R∗1, R
∗
2)-achievable rate pairs (L1, L2).

Throughout the paper, we write non-asymptotic rates as
R1,n := 1

n logM1,n and R2,n := 1
n logM2,n. Roughly

speaking, the preceding definition is concerned with ε-reliable
codes such that Rj,n ≥ R∗j + 1√

n
Lj + o

(
1√
n

)
for j = 1, 2.

We will also use the following standard definition: A rate
pair (R1, R2) is (n, ε)-achievable if there exists a length-n
code having an average error probability no higher than ε,
and whose rate is at least Rj for message j = 1, 2.

B. Notation

Except where stated otherwise,1 the i-th entry of a vector
(e.g. y) is denoted using a subscript (e.g. yi). For two vectors
of the same length a,b ∈ Rd, the notation a ≤ b means
that aj ≤ bj for all j. The notation N (u;µ,Λ) denotes the
multivariate Gaussian probability density function (pdf) with
mean µ and covariance Λ. We use the standard asymptotic
notations O(·), o(·), Θ(·), and ω(·). All logarithms have base
e, and all rates have units of nats. The closure operation is
denoted by cl(·).

The set of all probability distributions on an alphabet X
is denoted by P(X ), and the set of all types [9, Ch. 2] is

1For example, the vectors in (5)–(6), do not adhere to this convention.
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denoted by Pn(X ). For a given type QX ∈ Pn(X ), we define
the type class Tn(QX) to be the set of sequences having type
QX . Similarly, given a conditional type QY |X and a sequence
x ∈ Tn(QX), we define Tnx (QY |X) to be the set of sequences
y such that (x,y) ∈ Tn(QX ×QY |X).

II. MAIN RESULT

A. Preliminary Definitions

Given the rate pairs (R1,n, R2,n) and (R∗1, R
∗
2), we define

Rn :=

[
R1,n

R1,n +R2,n

]
, R∗ :=

[
R∗1

R∗1 +R∗2

]
(5)

Similarly, given the second-order rate pair (L1, L2), we write

L :=

[
L1

L1 + L2

]
(6)

Given a joint input distribution PX1X2 ∈ P(X1 × X2), we
define PX1X2Y := PX1X2 × W , and denote the induced
marginals by PY |X1

, PY , etc. We define the following infor-
mation density vector, which implicitly depends on PX1X2

:

j(x1, x2, y) :=
[
j1(x1, x2, y) j12(x1, x2, y)

]T
(7)

=

[
log

W (y|x1, x2)

PY |X2
(y|x2)

log
W (y|x1, x2)

PY (y)

]T
. (8)

The mean and conditional covariance matrix are given by

I(PX1X2) = E
[
j(X1, X2, Y )

]
, (9)

V(PX1X2
) = E

[
Cov

(
j(X1, X2, Y )

∣∣X1, X2

)]
. (10)

Observe that the entries of I(PX1X2) are the mutual informa-
tions appearing in (1)–(2). We write the entries of I and V
using subscripts as follows:

I(PX1X2
) =

[
I1(PX1X2)
I12(PX1X2

)

]
, (11)

V(PX1X2
) =

[
V1(PX1X2

) V1,12(PX1X2
)

V1,12(PX1X2
) V12(PX1X2

)

]
, (12)

For a given point (z1, z2) ∈ R2 and a positive semi-definite
matrix V, we define the multivariate Gaussian cumulative
distribution function (CDF)

Ψ(z1, z2; V) :=

∫ z2

−∞

∫ z1

−∞
N (u; 0,V) du, (13)

and for a given ε ∈ (0, 1), we define the corresponding
“inverse” set

Ψ−1(V, ε) :=
{

(z1, z2) ∈ R2 : Ψ(−z1,−z2; V) ≥ 1− ε
}
.

(14)

Similarly, we let Φ(·) denote the standard Gaussian CDF, and
we denote its functional inverse by Φ−1(·). Moreover, we let

Π(R∗1, R
∗
2) :=

{
PX1X2 : I(PX1X2) ≥ R∗

}
(15)

be the set of input distributions achieving a given point
(R∗1, R

∗
2) of the boundary of C. Note that in contrast with the

single-user setting [1]–[3], this definition uses an inequality
rather than an equality, as one of the mutual information

C

R1

R2

T̂−

T̂+

T̂−
T̂+

T̂−

T̂+

T̂−
T̂+

C

R1

R2

Fig. 1. Unit tangent vectors T̂− and T̂+ for two boundary points (R∗
1 , R

∗
2)

of two hypothetical capacity regions.

quantities may be strictly larger than the corresponding entry
of R∗ and yet be first-order optimal. For example, assuming
that the capacity region on the left of Figure 1 is achieved by
a single input distribution, all points (R∗1, R

∗
2) on the vertical

boundary satisfy I12(PX1X2) > R∗1 +R∗2.
The preceding definitions are analogous to those appearing

in previous works such as [4], while the remaining defini-
tions are somewhat less standard. Given the boundary point
(R∗1, R

∗
2), we let T̂− := T̂−(R∗1, R

∗
2) and T̂+ := T̂+(R∗1, R

∗
2)

denote the left and right unit tangent vectors along the bound-
ary of C in (R1, R2) space; see Figure 1 for an illustration.
Furthermore, we define

T− :=

[
T̂−,1

T̂−,1 + T̂−,2

]
, T+ :=

[
T̂+,1

T̂+,1 + T̂+,2

]
. (16)

It is understood that T̂− and T− (respectively, T̂+ and T+)
are undefined when R∗1 = 0 (respectively, R∗2 = 0). As is
observed in Figure 1, we have T̂− = −T̂+ on the curved
and straight-line parts of C, and T̂− 6= −T̂+ when there is a
sudden change in slope (e.g. at a corner point).

The following set of vectors can be thought of as those that
point strictly inside C when placed at (R∗1, R

∗
2):

V̂(R∗1, R
∗
2) :={

v ∈ R2 : (R∗1, R
∗
2) + αv ∈ C for some α > 0

}
. (17)

Using this definition, we set

V(R∗1, R
∗
2) := cl

( ⋃
(v1,v2)∈V̂(R∗

1 ,R
∗
2)

{
(v1, v1 + v2)

})
. (18)

Due to the closure operation, it is readily verified that T− ∈ V
and T+ ∈ V .

B. Statement of Main Result

For a given boundary point (R∗1, R
∗
2) and input distribution

PX1X2
∈ Π(R∗1, R

∗
2), we define the set L0(ε;R∗1, R

∗
2, PX1X2

)
separately for the following three cases:

(i) If R∗1 = I1(PX1X2
) and R∗1 +R∗2 < I12(PX1X2

), then

L0 =
{

(L1, L2) : L1 ≤
√
V1(PX1X2)Φ−1(ε)

}
(19)



(ii) If R∗1 < I1(PX1X2
) and R∗1 +R∗2 = I12(PX1X2

), then

L0 =
{

(L1, L2) : L1 + L2 ≤
√
V12(PX1X2)Φ−1(ε)

}
(20)

(iii) If R∗1 = I1(PX1X2
) and R∗1 +R∗2 = I12(PX1X2

), then

L0 =
{

(L1, L2) : L ∈
⋃
β≥0

{
βT− + Ψ−1(V(PX1X2), ε)

}}
∪
{

(L1, L2) : L ∈
⋃
β≥0

{
βT+ + Ψ−1(V(PX1X2), ε)

}}
,

(21)

where the first (respectively, second) set in the union is
understood to be empty when R∗1 = 0 (respectively, R∗2 = 0).

We are now in a position to state our main result.

Theorem 1. For any point (R∗1, R
∗
2) on the boundary of the

capacity region, and any ε ∈ (0, 1), we have

L(ε;R∗1, R
∗
2)=

⋃
PX1X2

∈Π(R∗
1 ,R

∗
2)

L0(ε;R∗1, R
∗
2, PX1X2). (22)

Proof: See Section III.
Suppose that X1 = ∅ and (R∗1, R

∗
2) = (0, C), where C :=

maxPX2
I(PX2 ,W ) and W : X2 → Y . Clearly L1 plays no

role, and Theorem 1 states that the achievable values of L2

are precisely those in the set

L2(ε) :=
⋃

PX2
∈Π

{
L2 : L2 ≤

√
V (PX2)Φ−1(ε)

}
, (23)

where Π := {PX2
: I(PX2

,W ) = C}, and V (·) := V12(·)
is the conditional information variance [3]. Letting L∗ :=
supL2(ε) be the second-order coding rate [2] of the discrete
memoryless channel (DMC) W : X2 → Y , we readily obtain

L∗ =


√

minPX2
∈Π V (PX2

) Φ−1(ε) ε < 1
2√

maxPX2
∈Π V (PX2) Φ−1(ε) ε ≥ 1

2 .
(24)

Thus, our main result reduces to the classical result of
Strassen [1, Thm. 3.1] for the single-user setting (see also
[2], [3]). This illustrates the necessity of the set Π(R∗1, R

∗
2)

in the characterization of L(ε;R∗1, R
∗
2) in Theorem 1. Such

a set is not needed in the Gaussian setting [7], as every
boundary point is achieved uniquely by a single multivariate
Gaussian distribution. Another notable difference in Theorem
1 compared to [7] is the use of left and right tangent vectors
instead of a single derivative vector.

Both of the preceding differences were also recently ob-
served in an achievability result for the standard MAC [10].
However, no converse results were given in [10], and the main
novelty of the present paper is in the converse proof.

It is not difficult to show that L equals a half-space when-
ever T̂− = −T̂+, as was observed in [7], [10]. A less obvious
fact is that the unions over β in (21) can be replaced by β = 0
whenever the corresponding input distribution PX1X2

achieves
all of the boundary points in a neighborhood of (R∗1, R

∗
2).

We refer the reader to [7], [10] for further discussions and
illustrative numerical examples.

III. PROOF OF THEOREM 1

Due to space constraints, we do not attempt to make the
proof self-contained. We avoid repeating the parts in common
with [7], [10], and we focus on the most novel aspects.

A. Achievability

The achievability part of Theorem 1 is proved using a
similar (yet simpler) argument to that of the standard MAC
given in [10], so we only provide a brief outline.

We use constant-composition superposition coding with
coded time sharing [8, Sec. 4.5.3]. We set U := {1, 2}, fix
a joint distribution QUX1X2

(to be specified shortly), and let
QUX1X2,n be the closest corresponding joint type. We write
the marginal distributions in the usual way (e.g. QX1|U,n).
We let u be a deterministic time-sharing sequence with
nQU,n(1) ones and nQU,n(2) twos. We first generate the M2,n

codewords of user 2 independently according to the uniform
distribution on Tnu (QX1|U,n). For each m2, we generate M1,n

codewords for user 1 conditionally independently according
to the uniform distribution on Tnux2

(QX1|X2U,n), where x2 is
the codeword for user 2 corresponding to m2.

We fix β ≥ 0 and choose QUX1X2 such that QU (1) =
1 − β√

n
and QU (2) = β√

n
, let QX1X2|U=1 be an input

distribution PX1X2
achieving the boundary point of interest,

and let QX1X2|U=2 be an input distribution P ′X1X2
achieving

a different boundary point. We define the shorthands I :=
I(PX1X2), V := V(PX1X2) and I′ := I(P ′X1X2

). Using
the generalized Feinstein bound given in [7] along with the
multivariate Berry-Esseen theorem, we can use the arguments
of [10] to conclude that all rate pairs (R1,n, R2,n) satisfying

Rn ∈ I +
1√
n

(
β(I′ − I) + Ψ−1(V, ε)

)
+ g(n)1 (25)

are (n, ε)-achievable for some g(n) = O
(
n1/4

)
depending on

ε, β, PX1X2
and P ′X1X2

. Note that this argument may require
a reduction to a lower dimension for singular dispersion
matrices; an analogous reduction will be given in the converse
proof below.

The achievability part of Theorem 1 now follows as in [10].
In the cases corresponding to (19)–(20), we eliminate one
of the two element-wise inequalities from (25) to obtain the
desired result. For the remaining case corresponding to (21),
we obtain the first (respectively, second) term in the union by
letting P ′X1X2

achieve a boundary point approaching (R∗1, R
∗
2)

from the left (respectively, right).

B. Converse

The converse proof builds on that for the Gaussian case [7],
but contains more new ideas compared to the achievability
part. We thus provide a more detailed treatment.

1) A Reduction from Average Error to Maximal Error:
Using an identical argument to the Gaussian case [7] (which
itself builds on [9, Cor. 16.2]), we can show that L(ε;R∗1, R

∗
2)

is identical when the average error probability is replaced by
the maximal error probability in Def. 1. We may thus proceed
by considering the maximal error probability. Note that neither



this step nor the following step are possible for the standard
MAC; the assumption of degraded message sets is crucial.

2) A Reduction to Constant-Composition Codes: Using the
previous step and the fact that the number of joint types
on X1 × X2 is polynomial in n, we can again follow an
identical argument to the Gaussian case [7] to show that
L(ε;R∗1, R

∗
2) is unchanged when the codebook is restricted to

contain codeword pairs (x1,x2) sharing a common joint type.
We thus limit our attention to such codebooks; we denote the
corresponding sequence of joint types by {PX1X2,n}n≥1.

3) Passage to a Convergent Subsequence: Since P(X1 ×
X2) is compact, the sequence {PX1X2,n}n≥1 must have a
convergent subsequence, say indexed by a sequence {nk}k≥1

of block lengths. We henceforth limit our attention to values
of n on this subsequence. To avoid cumbersome notation,
we continue writing n instead of nk. However, it should
be understood that asymptotic notations such as O(·) and
(·)n → (·) are taken with respect to this subsequence. The
idea is that it suffices to prove the converse result only for
values of n on an arbitrary subsequence of (1, 2, 3, . . . ), since
we used the lim inf in (3) and the lim sup in (4).

4) A Verdú-Han-Type Converse Bound: We make use of
the following non-asymptotic converse bound from [7]:

εn ≥ 1− Pr

(
1

n

n∑
i=1

j(X1,i, X2,i, Yi) ≥ Rn − γ1

)
− 2e−nγ ,

(26)

where γ is an arbitrary constant, (X1,X2) is the random pair
induced by the codebook, and Y is the resulting output. The
output distributions defining j are those induced by the fixed
input joint type PX1X2,n. By the above constant-composition
reduction and a simple symmetry argument, we may replace
(X1,X2) by a fixed pair (x1,x2) ∈ Tn(PX1X2,n).

5) Handling Singular Dispersion Matrices: Directly ap-
plying the multivariate Berry-Esseen theorem (e.g. see [4,
Sec. VI]) to (26) is problematic, since the dispersion matrix
V(PX1X2,n) may be singular or asymptotically singular. We
therefore proceed by handling such matrices, and reducing the
problem to a lower dimension as necessary.

We henceforth use the shorthands In := I(PX1X2,n) and
Vn := V(PX1X2,n). An eigenvalue decomposition yields

Vn = UnDnUT
n , (27)

where Un is unitary (i.e. UnUT
n is the identity matrix) and

Dn is diagonal. Since we passed to a convergent subsequence
in Step 3 and the eigenvalue decomposition map Vn →
(Un,Dn) is continuous, we conclude that both Un and Dn

converge, say to U∞ and D∞. When rank(D∞) = 2 (i.e. D∞
has full rank), we directly use the multivariate Berry-Esseen
theorem. We proceed by discussing lower rank matrices.

Since Vn is the covariance matrix of An :=
1√
n

(∑n
i=1 j(x1,i, x2,i, Yi)−nIn

)
(with Yi ∼W (·|x1,i, x2,i)),

we see that Dn is the covariance matrix of Ãn := UT
nAn. In

the case that rank(D∞) = 1, we may write

Ãn :=
[
Ãn,1 Ãn,2]T , (28)

where Var[Ãn,1] is bounded away from zero, and Var[Ãn,2]→
0. Since Un is unitary, we have

An = UnÃn = Un,1Ãn,1 + ∆n, (29)

where Un,i denotes the i-th column of Un, and ∆n :=
Un,2Ãn,2. Since An has mean zero by construction, the same
is true of Ãn and hence ∆n. Moreover, since Ãn,1 has
vanishing variance, the same is true of each entry of ∆n.
Thus, Chebyshev’s inequality implies that, for any δn > 0,

Pr
(
‖∆n‖∞ ≥ δn

)
≤ ψn
δ2
n

, (30)

where ψn := maxi=1,2 Var[∆n,i]→ 0.
We can now bound the probability in (26) as follows:

Pr

(
1

n

n∑
i=1

j(X1,i, X2,i, Yi) ≥ Rn − γ1

)
= Pr

(
An ≥

√
n
(
Rn − In − γ1

))
(31)

= Pr
(
Un,1Ãn,1 + ∆n ≥

√
n
(
Rn − In − γ1

))
(32)

≤ Pr
(
Un,1Ãn,1 ≥

√
n
(
Rn − In − γ1

)
− δn1

)
+ Pr

(
‖∆n‖∞ ≥ δn

)
(33)

≤ Pr
(
Un,1Ãn,1≥

√
n
(
Rn−In−γ1

)
− δn1

)
+
ψn
δ2
n

, (34)

where the last three steps respectively follow from (29), [4,
Lemma 9], and (30). We now choose δn = ψ

1/3
n , so that both

δn and ψn

δ2n
are vanishing. Equation (34) permits an application

of the univariate Berry-Esseen theorem, since the variance of
Ãn,1 is bounded away from zero.

The case rank(D∞) = 0 is handled similarly using Cheby-
shev’s inequality, and we thus omit the details and merely state
that (34) is replaced by

1
(√

n
(
Rn − In − γ1

)
≤ δn1

)
+ δ′n (35)

where δn → 0 and δ′n → 0.
6) Application of the Berry-Esseen Theorem: Let I∞ and

V∞ denote the limiting values (on the convergent subsequence
of block lengths) of In and Vn. In this step, we will use the
fact that Ψ−1(·, ε) is continuous in the following sense:

Ψ−1(Vn, ε)− δ1 ⊂ Ψ−1(V∞, ε) ⊂ Ψ−1(Vn, ε) + δ1 (36)

for any δ > 0 and sufficiently large n. This is proved using
a Taylor expansion when V∞ has full rank, and is proved
similarly to [7, Lemma 6] when V∞ is singular.

We claim that the preceding two steps, along with the choice
γ := logn

n , imply that the rate pair (R1,n, R2,n) satisfies

Rn ∈ In +
1√
n

Ψ−1(V∞, ε) + g(n)1 (37)

for some g(n) = o
(

1√
n

)
depending on PX1,X2,n and ε. In the

case rank(D∞) = 2 (see the preceding step), this follows by
applying the multivariate Berry-Esseen theorem with a positive
definite covariance matrix, re-arranging to obtain (37) with Vn

in place of V∞, and then using (36).



In the case rank(V∞) = 1, we obtain (37) by applying
the univariate Berry-Esseen theorem to (34) and similarly
applying rearrangements and (36). The resulting expression
can be written in the multivariate form in (37) by a similar
argument to [4, p. 894].

When rank(V∞) = 0, we have V∞ = 0, and Ψ−1(V∞, ε)
is simply the quadrant {z : z ≤ 0}. We thus obtain (37) by
noting that the indicator function in (35) is zero for sufficiently
large n whenever either entry of Rn exceeds the corresponding
entry of In by Θ

(
1√
n

)
.

7) Establishing the Convergence to Π(R∗1, R
∗
2): We use

a proof by contradiction to show that the limiting value
PX1X2,∞ of PX1X2,n (on the convergent subsequence of block
lengths) must lie within Π(R∗1, R

∗
2). Assuming the contrary, we

observe from (15) that at least one of the strict inequalities
I1(PX1X2,∞) < R∗1 and I12(PX1X2,∞) < R∗1 + R∗2 must
hold. It thus follows from (37) and the continuity of I(PX1X2

)
that there exists δ > 0 such that either R1,n ≤ R∗1 − δ or
R1,n + R2,n ≤ R∗1 + R∗2 − δ for sufficiently large n, in con-
tradiction with the convergence of (R1,n, R2,n) to (R∗1, R

∗
2)

implied by (3).
8) Completion of the Proof for Cases (i) and (ii): Here

we handle distributions PX1X2,∞ corresponding to the cases
in (19)–(20). We focus on case (ii), since case (i) is handled
similarly.

It is easily verified from (14) that each point z in Ψ−1(V, ε)
satisfies z1 + z2 ≤

√
V12Φ−1(ε). We can thus weaken (37) to

R1,n +R2,n ≤ I12(PX1X2,n) +

√
V∞,12

n
Φ−1(ε) + g(n).

(38)

We will complete the proof by showing that I12(PX1X2,n) ≤
R∗1 +R∗2 for all n. Since

⋃
PX1X2

{
I12(PX1X2

)
}

is the set of
all achievable (first-order) sum rates, it suffices to show that
any boundary point corresponding to (20) is one maximizing
the sum rate. We proceed by establishing that this is true.

The conditions stated before (20) state that (R∗1, R
∗
2) lies on

the diagonal part of the achievable trapezium corresponding
to PX1X2

, and away from the corner point. It follows that
p1 := (R∗1 − δ,R∗2 + δ) and p2 := (R∗1 + δ,R∗2 − δ) are
achievable for sufficiently small δ. If another point p0 with a
strictly higher sum rate were achievable, then all points within
the triangle with corners defined by p0, p1 and p2 would also
be achievable. This would imply the achievability of (R∗1 +
δ′, R∗2 + δ′) for sufficiently small δ′ > 0, which contradicts
the assumption that (R∗1, R

∗
2) is a boundary point.

9) Completion of the Proof for Case (iii)): We now turn to
the remaining case in (21), corresponding to I∞ = R∗. Again
using the fact that I(PX1X2

) is continuous in PX1X2
, we have

In = R∗ + ∆(PX1X2,n), (39)

where ‖∆(PX1X2,n)‖∞ → 0. We claim that ∆(PX1X2,n) ∈
V(R∗1, R

∗
2) (see (18)). Indeed, if this were not the case, then

(39) would imply that the pair (In,1, In,12− In,1) lies outside

the capacity region, in contradiction with the fact that rates
satisfying (1)–(2) are (first-order) achievable for all PX1X2 .

Assuming for the time being that ‖∆(PX1X2,n)‖∞ =
O
(

1√
n

)
, we immediately obtain the outer bound

L(ε,R∗1, R
∗
2) ⊆

{
(L1, L2) :

L ∈
⋃

PX1X2
∈Π,T∈V

{
Ψ−1(V(PX1X2

), ε) + T
}}

. (40)

The set in (40) clearly includes L0 in (21). We proceed by
showing that the reverse inclusion holds, and hence the two
sets are identical. Since T̂− and T̂+ are tangent vectors,
any vector T ∈ V can have one or more of its components
increased to yield a vector T′ whose direction coincides with
either T− or T+. The fact that the magnitude of T′ may be
arbitrary is captured by the unions over β ≥ 0 in (21).

It remains to handle the case that ‖∆(PX1X2,n)‖∞ is not
O
(

1√
n

)
. By performing another pass to a subsequence of block

lengths if necessary, we can assume that ‖∆(PX1X2,n)‖∞ =
ω
(

1√
n

)
. Such scalings can be shown to play no role in

characterizing L, similarly to [7]; we provide only an outline
here. Let ∆n,1 and ∆n,12 denote the entries of ∆(PX1X2,n),
and let ∆n,2 := ∆n,12 − ∆n,1. If either ∆n,1 or ∆n,2 is
negative and decays with a rate ω

(
1√
n

)
, then no value of the

corresponding Lj (j ∈ {1, 2}) can satisfy the condition in (3),
so the converse is trivial. On the other hand, if either ∆n,1

or ∆n,2 is positive and ω
(

1√
n

)
, we simply recover the right-

hand side of (40) in the limiting case that either T1 or T12−T1

(where T := [T1 T12]T ) grows unbounded. Thus, the required
converse statement for this case is already captured by (40).
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