2,068 research outputs found

    Beating the Generator-Enumeration Bound for pp-Group Isomorphism

    Full text link
    We consider the group isomorphism problem: given two finite groups G and H specified by their multiplication tables, decide if G cong H. For several decades, the n^(log_p n + O(1)) generator-enumeration bound (where p is the smallest prime dividing the order of the group) has been the best worst-case result for general groups. In this work, we show the first improvement over the generator-enumeration bound for p-groups, which are believed to be the hard case of the group isomorphism problem. We start by giving a Turing reduction from group isomorphism to n^((1 / 2) log_p n + O(1)) instances of p-group composition-series isomorphism. By showing a Karp reduction from p-group composition-series isomorphism to testing isomorphism of graphs of degree at most p + O(1) and applying algorithms for testing isomorphism of graphs of bounded degree, we obtain an n^(O(p)) time algorithm for p-group composition-series isomorphism. Combining these two results yields an algorithm for p-group isomorphism that takes at most n^((1 / 2) log_p n + O(p)) time. This algorithm is faster than generator-enumeration when p is small and slower when p is large. Choosing the faster algorithm based on p and n yields an upper bound of n^((1 / 2 + o(1)) log n) for p-group isomorphism.Comment: 15 pages. This is an updated and improved version of the results for p-groups in arXiv:1205.0642 and TR11-052 in ECC

    Algorithms for group isomorphism via group extensions and cohomology

    Full text link
    The isomorphism problem for finite groups of order n (GpI) has long been known to be solvable in nlogn+O(1)n^{\log n+O(1)} time, but only recently were polynomial-time algorithms designed for several interesting group classes. Inspired by recent progress, we revisit the strategy for GpI via the extension theory of groups. The extension theory describes how a normal subgroup N is related to G/N via G, and this naturally leads to a divide-and-conquer strategy that splits GpI into two subproblems: one regarding group actions on other groups, and one regarding group cohomology. When the normal subgroup N is abelian, this strategy is well-known. Our first contribution is to extend this strategy to handle the case when N is not necessarily abelian. This allows us to provide a unified explanation of all recent polynomial-time algorithms for special group classes. Guided by this strategy, to make further progress on GpI, we consider central-radical groups, proposed in Babai et al. (SODA 2011): the class of groups such that G mod its center has no abelian normal subgroups. This class is a natural extension of the group class considered by Babai et al. (ICALP 2012), namely those groups with no abelian normal subgroups. Following the above strategy, we solve GpI in nO(loglogn)n^{O(\log \log n)} time for central-radical groups, and in polynomial time for several prominent subclasses of central-radical groups. We also solve GpI in nO(loglogn)n^{O(\log\log n)} time for groups whose solvable normal subgroups are elementary abelian but not necessarily central. As far as we are aware, this is the first time there have been worst-case guarantees on a no(logn)n^{o(\log n)}-time algorithm that tackles both aspects of GpI---actions and cohomology---simultaneously.Comment: 54 pages + 14-page appendix. Significantly improved presentation, with some new result

    Group homomorphisms as error correcting codes

    Get PDF
    We investigate the minimum distance of the error correcting code formed by the homomorphisms between two finite groups GG and HH. We prove some general structural results on how the distance behaves with respect to natural group operations, such as passing to subgroups and quotients, and taking products. Our main result is a general formula for the distance when GG is solvable or HH is nilpotent, in terms of the normal subgroup structure of GG as well as the prime divisors of G|G| and H|H|. In particular, we show that in the above case, the distance is independent of the subgroup structure of HH. We complement this by showing that, in general, the distance depends on the subgroup structure GG.Comment: 13 page
    corecore