40 research outputs found

    On the Ingleton-Violating Finite Groups

    Get PDF
    Given n discrete random variables, its entropy vector is the 2^n - 1-dimensional vector obtained from the joint entropies of all non-empty subsets of the random variables. It is well known that there is a close relation between such an entropy vector and a certain group-characterizable vector obtained from a finite group and n of its subgroups; indeed, roughly speaking, knowing the region of all such group-characterizable vectors is equivalent to knowing the region of all entropy vectors. This correspondence may be useful for characterizing the space of entropic vectors and for designing network codes. If one restricts attention to abelian groups then not all entropy vectors can be obtained. This is an explanation for the fact shown by Dougherty et al. that linear network codes cannot achieve capacity in general network coding problems (since linear network codes come from abelian groups). All abelian group-characterizable vectors, and by fiat all entropy vectors generated by linear network codes, satisfy a linear inequality called the Ingleton inequality. General entropy vectors, however, do not necessarily have this property. It is, therefore, of interest to identify groups that violate the Ingleton inequality. In this paper, we study the problem of finding nonabelian finite groups that yield characterizable vectors, which violate the Ingleton inequality. Using a refined computer search, we find the symmetric group S_5 to be the smallest group that violates the Ingleton inequality. Careful study of the structure of this group, and its subgroups, reveals that it belongs to the Ingleton-violating family PGL(2,q) with a prime power q ≥ 5 , i.e., the projective group of 2×2 nonsingular matrices with entries in F_q . We further interpret this family of groups, and their subgroups, using the theory of group actions and identify the subgroups as certain stabilizers. We also extend the construction to more general groups such as PGL(n,q) and GL(n,q) . The families of groups identified here are therefore good candidates for constructing network codes more powerful than linear network codes, and we discuss some considerations for constructing such group network codes

    Information-Theoretic Studies and Capacity Bounds: Group Network Codes and Energy Harvesting Communication Systems

    Get PDF
    Network information theory and channels with memory are two important but difficult frontiers of information theory. In this two-parted dissertation, we study these two areas, each comprising one part. For the first area we study the so-called entropy vectors via finite group theory, and the network codes constructed from finite groups. In particular, we identify the smallest finite group that violates the Ingleton inequality, an inequality respected by all linear network codes, but not satisfied by all entropy vectors. Based on the analysis of this group we generalize it to several families of Ingleton-violating groups, which may be used to design good network codes. Regarding that aspect, we study the network codes constructed with finite groups, and especially show that linear network codes are embedded in the group network codes constructed with these Ingleton-violating families. Furthermore, such codes are strictly more powerful than linear network codes, as they are able to violate the Ingleton inequality while linear network codes cannot. For the second area, we study the impact of memory to the channel capacity through a novel communication system: the energy harvesting channel. Different from traditional communication systems, the transmitter of an energy harvesting channel is powered by an exogenous energy harvesting device and a finite-sized battery. As a consequence, each time the system can only transmit a symbol whose energy consumption is no more than the energy currently available. This new type of power supply introduces an unprecedented input constraint for the channel, which is random, instantaneous, and has memory. Furthermore, naturally, the energy harvesting process is observed causally at the transmitter, but no such information is provided to the receiver. Both of these features pose great challenges for the analysis of the channel capacity. In this work we use techniques from channels with side information, and finite state channels, to obtain lower and upper bounds of the energy harvesting channel. In particular, we study the stationarity and ergodicity conditions of a surrogate channel to compute and optimize the achievable rates for the original channel. In addition, for practical code design of the system we study the pairwise error probabilities of the input sequences

    Entropy Region and Convolution

    Get PDF
    The entropy region is constructed from vectors of random variables by collecting Shannon entropies of all subvectors. Its shape is studied here by means of polymatroidal constructions, notably by convolution. The closure of the region is decomposed into the direct sum of tight and modular parts, reducing the study to the tight part. The relative interior of the reduction belongs to the entropy region. Behavior of the decomposition under self-adhesivity is clarified. Results are specialized and extended to the region constructed from four tuples of random variables. This and computer experiments help to visualize approximations of a symmetrized part of the entropy region. The four-atom conjecture on the minimal Ingleton score is refuted. © 2016 IEEE
    corecore