8,773 research outputs found

    On Independence Atoms and Keys

    Full text link
    Uniqueness and independence are two fundamental properties of data. Their enforcement in database systems can lead to higher quality data, faster data service response time, better data-driven decision making and knowledge discovery from data. The applications can be effectively unlocked by providing efficient solutions to the underlying implication problems of keys and independence atoms. Indeed, for the sole class of keys and the sole class of independence atoms the associated finite and general implication problems coincide and enjoy simple axiomatizations. However, the situation changes drastically when keys and independence atoms are combined. We show that the finite and the general implication problems are already different for keys and unary independence atoms. Furthermore, we establish a finite axiomatization for the general implication problem, and show that the finite implication problem does not enjoy a k-ary axiomatization for any k

    Sound Computational Interpretation of Formal Encryption with Composed Keys

    Get PDF
    The formal and computational views of cryptography have been related by the seminal work of Abadi and Rogaway. In their work, a formal treatment of encryption that uses atomic keys is justified in the computational world. However, many proposed formal approaches allow the use of composed keys, where any arbitrary expression can be used as encryption key. We consider an extension of the formal model presented by Abadi and Rogaway, in which it is allowed to use composed keys in formal encryption. We then provide a computational interpretation for expressions that allow us to establish the computational soundness of formal encryption with composed keys

    The study of probability model for compound similarity searching

    Get PDF
    Information Retrieval or IR system main task is to retrieve relevant documents according to the users query. One of IR most popular retrieval model is the Vector Space Model. This model assumes relevance based on similarity, which is defined as the distance between query and document in the concept space. All currently existing chemical compound database systems have adapt the vector space model to calculate the similarity of a database entry to a query compound. However, it assumes that fragments represented by the bits are independent of one another, which is not necessarily true. Hence, the possibility of applying another IR model is explored, which is the Probabilistic Model, for chemical compound searching. This model estimates the probabilities of a chemical structure to have the same bioactivity as a target compound. It is envisioned that by ranking chemical structures in decreasing order of their probability of relevance to the query structure, the effectiveness of a molecular similarity searching system can be increased. Both fragment dependencies and independencies assumption are taken into consideration in achieving improvement towards compound similarity searching system. After conducting a series of simulated similarity searching, it is concluded that PM approaches really did perform better than the existing similarity searching. It gave better result in all evaluation criteria to confirm this statement. In terms of which probability model performs better, the BD model shown improvement over the BIR model

    Creating a Canadian profession: the nuclear engineer, c. 1940-1968

    Get PDF
    Canada, as one of the three Allied nations collaborating on atomic energy development during the Second World War, had an early start in applying its new knowledge and defining a new profession. Owing to postwar secrecy and distinct national aims for the field, nuclear engineering was shaped uniquely by the Canadian context. Alone among the postwar powers, Canadian exploration of atomic energy eschewed military applications; the occupation emerged within a governmental monopoly; the intellectual content of the discipline was influenced by its early practitioners, administrators, scarce resources, and university niches; and a self-recognized profession coalesced later than did its American and British counterparts. This paper argues that the history of the emergence of Canadian nuclear engineers exemplifies unusually strong shaping of technical expertise by political and cultural context

    Upwards Closed Dependencies in Team Semantics

    Full text link
    We prove that adding upwards closed first-order dependency atoms to first-order logic with team semantics does not increase its expressive power (with respect to sentences), and that the same remains true if we also add constancy atoms. As a consequence, the negations of functional dependence, conditional independence, inclusion and exclusion atoms can all be added to first-order logic without increasing its expressive power. Furthermore, we define a class of bounded upwards closed dependencies and we prove that unbounded dependencies cannot be defined in terms of bounded ones.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Symmetry implies independence

    Get PDF
    Given a quantum system consisting of many parts, we show that symmetry of the system's state, i.e., invariance under swappings of the subsystems, implies that almost all of its parts are virtually identical and independent of each other. This result generalises de Finetti's classical representation theorem for infinitely exchangeable sequences of random variables as well as its quantum-mechanical analogue. It has applications in various areas of physics as well as information theory and cryptography. For example, in experimental physics, one typically collects data by running a certain experiment many times, assuming that the individual runs are mutually independent. Our result can be used to justify this assumption.Comment: LaTeX, contains 4 figure

    On the Interaction of Inclusion Dependencies with Independence Atoms

    Get PDF
    Proceeding volume: 46Inclusion dependencies are one of the most important database constraints. In isolation their finite and unrestricted implication problems coincide, are finitely axiomatizable, PSPACE-complete, and fixed-parameter tractable in their arity. In contrast, finite and unrestricted implication problems for the combined class of functional and inclusion de- pendencies deviate from one another and are each undecidable. The same holds true for the class of embedded multivalued dependencies. An important embedded tractable fragment of embedded multivalued dependencies are independence atoms. These stipulate independence between two attribute sets in the sense that for every two tuples there is a third tuple that agrees with the first tuple on the first attribute set and with the second tuple on the second attribute set. For independence atoms, their finite and unrestricted implication problems coincide, are finitely axiomatizable, and decidable in cubic time. In this article, we study the implication problems of the combined class of independence atoms and inclusion dependencies. We show that their finite and unrestricted implication problems coincide, are finitely axiomatizable, PSPACE-complete, and fixed-parameter tractable in their arity. Hence, significant expressivity is gained without sacrificing any of the desirable properties that inclusion dependencies have in isolation. Finally, we establish an efficient condition that is sufficient for independence atoms and inclusion dependencies not to inter- act. The condition ensures that we can apply known algorithms for deciding implication of the individual classes of independence atoms and inclusion dependencies, respectively, to decide implication for an input that combines both individual classes.Peer reviewe
    corecore