6,409 research outputs found

    Nonparametric causal effects based on incremental propensity score interventions

    Full text link
    Most work in causal inference considers deterministic interventions that set each unit's treatment to some fixed value. However, under positivity violations these interventions can lead to non-identification, inefficiency, and effects with little practical relevance. Further, corresponding effects in longitudinal studies are highly sensitive to the curse of dimensionality, resulting in widespread use of unrealistic parametric models. We propose a novel solution to these problems: incremental interventions that shift propensity score values rather than set treatments to fixed values. Incremental interventions have several crucial advantages. First, they avoid positivity assumptions entirely. Second, they require no parametric assumptions and yet still admit a simple characterization of longitudinal effects, independent of the number of timepoints. For example, they allow longitudinal effects to be visualized with a single curve instead of lists of coefficients. After characterizing these incremental interventions and giving identifying conditions for corresponding effects, we also develop general efficiency theory, propose efficient nonparametric estimators that can attain fast convergence rates even when incorporating flexible machine learning, and propose a bootstrap-based confidence band and simultaneous test of no treatment effect. Finally we explore finite-sample performance via simulation, and apply the methods to study time-varying sociological effects of incarceration on entry into marriage

    Unbiased and Consistent Nested Sampling via Sequential Monte Carlo

    Full text link
    We introduce a new class of sequential Monte Carlo methods called Nested Sampling via Sequential Monte Carlo (NS-SMC), which reframes the Nested Sampling method of Skilling (2006) in terms of sequential Monte Carlo techniques. This new framework allows convergence results to be obtained in the setting when Markov chain Monte Carlo (MCMC) is used to produce new samples. An additional benefit is that marginal likelihood estimates are unbiased. In contrast to NS, the analysis of NS-SMC does not require the (unrealistic) assumption that the simulated samples be independent. As the original NS algorithm is a special case of NS-SMC, this provides insights as to why NS seems to produce accurate estimates despite a typical violation of its assumptions. For applications of NS-SMC, we give advice on tuning MCMC kernels in an automated manner via a preliminary pilot run, and present a new method for appropriately choosing the number of MCMC repeats at each iteration. Finally, a numerical study is conducted where the performance of NS-SMC and temperature-annealed SMC is compared on several challenging and realistic problems. MATLAB code for our experiments is made available at https://github.com/LeahPrice/SMC-NS .Comment: 45 pages, some minor typographical errors fixed since last versio

    Analysis of Testing-Based Forward Model Selection

    Full text link
    This paper introduces and analyzes a procedure called Testing-based forward model selection (TBFMS) in linear regression problems. This procedure inductively selects covariates that add predictive power into a working statistical model before estimating a final regression. The criterion for deciding which covariate to include next and when to stop including covariates is derived from a profile of traditional statistical hypothesis tests. This paper proves probabilistic bounds, which depend on the quality of the tests, for prediction error and the number of selected covariates. As an example, the bounds are then specialized to a case with heteroskedastic data, with tests constructed with the help of Huber-Eicker-White standard errors. Under the assumed regularity conditions, these tests lead to estimation convergence rates matching other common high-dimensional estimators including Lasso

    Incrementally Learned Mixture Models for GNSS Localization

    Full text link
    GNSS localization is an important part of today's autonomous systems, although it suffers from non-Gaussian errors caused by non-line-of-sight effects. Recent methods are able to mitigate these effects by including the corresponding distributions in the sensor fusion algorithm. However, these approaches require prior knowledge about the sensor's distribution, which is often not available. We introduce a novel sensor fusion algorithm based on variational Bayesian inference, that is able to approximate the true distribution with a Gaussian mixture model and to learn its parametrization online. The proposed Incremental Variational Mixture algorithm automatically adapts the number of mixture components to the complexity of the measurement's error distribution. We compare the proposed algorithm against current state-of-the-art approaches using a collection of open access real world datasets and demonstrate its superior localization accuracy.Comment: 8 pages, 5 figures, published in proceedings of IEEE Intelligent Vehicles Symposium (IV) 201
    • …
    corecore