77,622 research outputs found

    On Improving Run-time Checking in Dynamic Languages

    Get PDF
    In order to detect incorrect program behaviors, a number of approaches have been proposed, which include a combination of language-level constructs (procedure-level annotations such as assertions/contracts, gradual types, etc.) and associated tools (such as static code analyzers and run-time verification frameworks). However, it is often the case that these constructs and tools are not used to their full extent in practice due to a number of limitations such as excessive run-time overhead and/or limited expressiveness. The issue is especially prominent in the context of dynamic languages without an underlying strong type system, such as Prolog. In our work we propose several practical solutions for minimizing the run-time overhead associated with assertion-based verification while keeping the correctness guarantees provided by run-time checks. We present the solutions in the context of the Ciao system, where a combination of an abstract interpretation-based static analyzer and run-time verification framework is available, although our proposals can be straightforwardly adapted to any other similar system

    Combining Static and Dynamic Contract Checking for Curry

    Full text link
    Static type systems are usually not sufficient to express all requirements on function calls. Hence, contracts with pre- and postconditions can be used to express more complex constraints on operations. Contracts can be checked at run time to ensure that operations are only invoked with reasonable arguments and return intended results. Although such dynamic contract checking provides more reliable program execution, it requires execution time and could lead to program crashes that might be detected with more advanced methods at compile time. To improve this situation for declarative languages, we present an approach to combine static and dynamic contract checking for the functional logic language Curry. Based on a formal model of contract checking for functional logic programming, we propose an automatic method to verify contracts at compile time. If a contract is successfully verified, dynamic checking of it can be omitted. This method decreases execution time without degrading reliable program execution. In the best case, when all contracts are statically verified, it provides trust in the software since crashes due to contract violations cannot occur during program execution.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    Exploiting Term Hiding to Reduce Run-time Checking Overhead

    Full text link
    One of the most attractive features of untyped languages is the flexibility in term creation and manipulation. However, with such power comes the responsibility of ensuring the correctness of these operations. A solution is adding run-time checks to the program via assertions, but this can introduce overheads that are in many cases impractical. While static analysis can greatly reduce such overheads, the gains depend strongly on the quality of the information inferred. Reusable libraries, i.e., library modules that are pre-compiled independently of the client, pose special challenges in this context. We propose a technique which takes advantage of module systems which can hide a selected set of functor symbols to significantly enrich the shape information that can be inferred for reusable libraries, as well as an improved run-time checking approach that leverages the proposed mechanisms to achieve large reductions in overhead, closer to those of static languages, even in the reusable-library context. While the approach is general and system-independent, we present it for concreteness in the context of the Ciao assertion language and combined static/dynamic checking framework. Our method maintains the full expressiveness of the assertion language in this context. In contrast to other approaches it does not introduce the need to switch the language to a (static) type system, which is known to change the semantics in languages like Prolog. We also study the approach experimentally and evaluate the overhead reduction achieved in the run-time checks.Comment: 26 pages, 10 figures, 2 tables; an extension of the paper version accepted to PADL'18 (includes proofs, extra figures and examples omitted due to space reasons
    • …
    corecore