3 research outputs found

    On Identifying a Massive Number of Distributions

    Full text link
    Finding the underlying probability distributions of a set of observed sequences under the constraint that each sequence is generated i.i.d by a distinct distribution is considered. The number of distributions, and hence the number of observed sequences, are let to grow with the observation blocklength nn. Asymptotically matching upper and lower bounds on the probability of error are derived.Comment: Under Submissio

    The Strongly Asynchronous Massive Access Channel

    Full text link
    This paper considers a Strongly Asynchronous and Slotted Massive Access Channel (SAS-MAC) where Kn:=enνK_n:=e^{n\nu} different users transmit a randomly selected message among Mn:=enRM_n:=e^{nR} ones within a strong asynchronous window of length An:=enαA_n:=e^{n\alpha} blocks, where each block lasts nn channel uses. A global probability of error is enforced, ensuring that all the users' identities and messages are correctly identified and decoded. Achievability bounds are derived for the case that different users have similar channels, the case that users' channels can be chosen from a set which has polynomially many elements in the blocklength nn, and the case with no restriction on the users' channels. A general converse bound on the capacity region and a converse bound on the maximum growth rate of the number of users are derived.Comment: under submissio
    corecore