4 research outputs found

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    Minimization of network power consumption with redundancy elimination

    Get PDF
    International audienceRecently, energy-aware routing (EAR) has gained an increasing popularity in the networking research community. The idea is that traffic demands are redirected over a subset of the network links, allowing other links to sleep to save energy. In this paper, we propose GreenRE – a new EAR model with the support of data redundancy elimination (RE). This technique, enabled within routers, can virtually increase the capacity of network links. Based on real experiments on Orange Labs platform, we show that performing RE increases the energy consumption for routers. Therefore, it is important to determine which routers should enable RE and which links to put into sleep mode so that the power consumption of the network is minimized. We model the problem as Mixed Integer Linear Program and propose greedy heuristic algorithms for large networks. Simulations on several network topologies show that the GreenRE model can gain further 37% of energy savings compared to the classical EAR model

    On IGP link weight optimization for joint energy efficiency and load balancing improvement

    No full text
    The energy consumption of backbone networks has risen exponentially during the past decade with the advent of various bandwidth-hungry applications. To address this serious issue, network operators are keen to identify new energy-saving techniques to green their networks. Up to this point, the optimization of IGP link weights has only been used for load-balancing operations in IP-based networks. In this paper, we introduce a novel link weight setting algorithm, the Green Load-balancing Algorithm (GLA), which is able to jointly optimize both energy efficiency and load-balancing in backbone networks without any modification to the underlying network protocols. The distinct advantage of GLA is that it can be directly applied on top of existing link-sleeping based Energy-aware Traffic Engineering (ETE) schemes in order to achieve substantially improved energy saving gains, while at the same time maintain traditional traffic engineering objectives. In order to evaluate the performance of GLA without losing generality, we applied the scheme to a number of recently proposed but diverse ETE schemes based on link sleeping operations. Evaluation results based on the European academic network topology GÉANT and its real traffic matrices show that GLA is able to achieve significantly improved energy efficiency compared to the original standalone algorithms, while also achieving near-optimal load-balancing performance. In addition, we further consider end-to-end traffic delay requirements since the optimization of link weights for load-balancing and energy savings may introduce substantially increased traffic delay after link sleeping. In order to solve this issue, we modified the existing ETE schemes to improve their end-to-end traffic delay performance. The evaluation of the modified ETE schemes together with GLA shows that it is still possible to save a significant amount of energy while achieving substantial load-balancing within a given traffic delay constraint. © 2014 Elsevier B.V. All rights reserved

    On IGP link weight optimization for joint energy efficiency and load balancing improvement

    Get PDF
    The energy consumption of backbone networks has risen exponentially during the past decade with the advent of various bandwidth-hungry applications. To address this serious issue, network operators are keen to identify new energy-saving techniques to green their networks. Up to this point, the optimization of IGP link weights has only been used for load-balancing operations in IP-based networks. In this paper, we introduce a novel link weight setting algorithm, the Green Load-balancing Algorithm (GLA), which is able to jointly optimize both energy efficiency and load-balancing in backbone networks without any modification to the underlying network protocols. The distinct advantage of GLA is that it can be directly applied on top of existing link-sleeping based Energy-aware Traffic Engineering (ETE) schemes in order to achieve substantially improved energy saving gains, while at the same time maintain traditional traffic engineering objectives. In order to evaluate the performance of GLA without losing generality, we applied the scheme to a number of recently proposed but diverse ETE schemes based on link sleeping operations. Evaluation results based on the European academic network topology GÉANT and its real traffic matrices show that GLA is able to achieve significantly improved energy efficiency compared to the original standalone algorithms, while also achieving near-optimal load-balancing performance. In addition, we further consider end-to-end traffic delay requirements since the optimization of link weights for load-balancing and energy savings may introduce substantially increased traffic delay after link sleeping. In order to solve this issue, we modified the existing ETE schemes to improve their end-to-end traffic delay performance. The evaluation of the modified ETE schemes together with GLA shows that it is still possible to save a significant amount of energy while achieving substantial load-balancing within a given traffic delay constraint. © 2014 Elsevier B.V. All rights reserved
    corecore