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Abstract

Recently, energy-aware routing (EAR) has gained an increasing popularity
in the networking research community. The idea is that traffic demands are
redirected over a subset of the network links, allowing other links to sleep to
save energy. In this paper, we propose GreenRE - a new EAR model with the
support of data redundancy elimination (RE). This technique, enabled within
routers, can virtually increase the capacity of network links. Based on real
experiments on Orange Labs platform, we show that performing RE increases
the energy consumption for routers. Therefore, it is important to determine
which routers should enable RE and which links to put into sleep mode so
that the power consumption of the network is minimized. We model the
problem as Integer Linear Program and propose greedy heuristic algorithms
for large networks. Simulations on several network topologies show that the
GreenRE model can gain further 37% of energy savings compared to the
classical FAR model.
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1. Introduction

Recent studies exhibit that traffic load on routers has a small influence
on their energy consumption [1, 2|. Instead, the dominating factor is the
number of active elements on routers such as ports, line cards, base chassis,
etc. The basic idea of energy-aware routing (EAR) is that, during low traffic
periods (e.g. at night), traffic demands can be routed over a subset of the
network links while preserving connectivity and QoS. In this way, the links
excluded by the routing paths can be put into sleep mode (or more precisely,
two network interfaces on the two routers will sleep) to save energy.

In general, link capacity is the main constraint of the EAR problem. In
this work, we use an assumption that routers can eliminate redundant data
traffic and hence, virtually increase capacity of network links. As a result,
more traffic flows can be redirected and more links can sleep to save energy.
Although routers nowadays cannot remove repeated content from network
transfers, there exists WAN Optimization Controller (WOC) - a commercial
device used in enterprises or small ISPs to eliminate traffic redundancy [3,
4, 5]. In order to identify the power consumption directly induced by RE,
we perform real experiments on the WOC. Because the main idea of routers
performing RE is similar to the WOC functionality (see Section 2.2), we
believe that when a router eliminates traffic redundancy, it also consumes
additional energy like the WOC. In summary, the contributions of this work
are the following:

e We do real experiments to exhibit the power consumption of a WOC.

e We define and formulate GreenRE - a new EAR model as Mixed Integer
Linear Program (MILP).

e We propose and evaluate a greedy heuristic algorithm that can be used
for large-scale networks.

e By simulation, we present energy savings on real network topologies.

The rest of this paper is structured as follows. We summarize related works
in Section 2. In Section 3, we model GreenRE as ILP, then propose a greedy
heuristic algorithm. Simulation results are presented in Section 4. We present
a discussion on EAR in practice in Section 5. Finally, we conclude the work
in Section 6.



2. Related Works
2.1. Classical Energy-aware Routing (EAR)

Today’s networks are usually built with several redundant links and ag-
gressive over-provision in bandwidth. While these redundancies increase net-
work reliability, they also greatly reduce the network’s energy efficiency. In-
deed, all network devices are powered on but highly under-utilized most of
the time. Since power consumption of a router is independent from its traffic
load [1, 2], people proposed to put unused network elements into sleep mode
to save energy. This research idea is called energy-aware routing (FAR) and
is illustrated by the example in Figure 1. Although several works have shown
a great opportunity for saving energy using EAR [6, 7], there are a number of
issues that arise in practical implementation. We give a discussion on these
issues in Section 5.

30 /130 30 30 30

@Dt DD D22 SN
T &)

g Q &
hS Dﬂ S 20
30",

D™ =20 30
®L02e~20 @ e 19 @)-19-@) A9
So(Dloli 10 Capacltyonlmks\so\ D10.|5:10 Capacity onlinks __ >
@ o @O 10 @ 10 @ "'i’()’"@"'ia"@""1'5"' \10 '"15'**

(a) Shortest path routing: sleep 7 links (b) EAR: sleep 8 links

Figure 1: Example of shortest path routing and EAR.

As an example of EAR, we refer to Fig. 1. There are two traffic demands
0 — 5 and 10 — 15 with volumes D% = 20 Gb and D''° = 10 Gb.
The shortest path routing, as shown in Fig. 1a, uses 10 active links whereas
the remaining 7 links can be put into sleep mode. However, taking energy
consumption into account, in Fig. 1b, EAR solution allows 8 links to sleep,
thus energy consumption is further decreased. The problem of minimizing
the number of active links under QoS constraints can be precisely formulated
using Mixed Integer Linear Programming (MILP). However, this problem is
known to be NP-Hard [8], and currently exact solutions can only be found for
small networks. Therefore, many heuristic algorithms have been proposed to
find admissible solutions for large networks [8, 9].

2.2. Reduction of Traffic Load

Internet traffic exhibits a large amount of redundancy when different users
access the same or similar contents. Therefore, several works [10, 11, 12] have
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explored how to eliminate traffic redundancy on the network. Spring et al.
[13] developed the first system to remove redundant bytes from any traffic
flows. Following this approach, several commercial vendors have introduced
WAN Optimization Controller (WOC) - a device that can remove duplicate
content from network transfers [3, 4, 5]. WOCs are installed at individual
sites of small ISPs or enterprises to offer end-to-end RE between pairs of sites.
As shown in Fig. 2, the patterns of previously sent data are stored in database

& 3 w3

Synchronized compression database

Figure 2: Reduction of end-to-end link load using WOC

of the WOCs at both sending and receiving sides. The technique used to
synchronize the databases at peering WOCs can be found in [4]. Whenever
the WOC at the sending side notices the same data pattern coming from the
sending hosts, it sends a small signature instead of the original data (encoding
process). The receiving WOC then recovers the original data by looking up
the signature in its database (decoding process). Because signatures are only
a few bytes in size, sending signatures instead of actual data gives significant
bandwidth savings.

Recently, the success of WOC deployment has motivated researchers to
explore the benefits of deploying RE in routers across the entire Internet
[11, 12]. The core techniques used here are similar to those used by the WOC:
each router on the network has a local cache to store previously sent data
used to encode and decode data packets later on. Obviously, this technique
requires heavy computation and large memory for the local cache. However,
Anand et al. have shown that on a desktop 2.4 GHz CPU with 1 GB RAM,
the prototype can work at 2.2 Gbps for encoding and at 10 Gbps for decoding
packets [11]. Moreover, they believe that higher throughput can be attained
if the prototype is implemented in hardware. Several real traffic traces have
been collected to show that up to 50% of the traffic load can be reduced with
RE support [11, 12].

In next section, we propose GreenRE - the first model of energy-aware



routing with RE support. We show that RE, which was initially designed for
bandwidth savings, is also potential to reduce network power consumption.
3. Energy-aware Routing with RE

In the GreenRE model, RE is used to virtually increase capacity of the
network links. A drawback is that, as shown in [14], when a router performs
RE, it consumes more energy than usual. This introduces a tradeoff between
enabling RE on routers and putting links into sleep mode. We show that it
is a non-trivial task to find which routers should perform RE and which links
should sleep to minimize energy consumption for a backbone network.
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Figure 3: GreenRE with 50% of traffic redundancy

As an example, we refer to Fig. 3a with two traffic demands D%° = 20
Gb and D'%1® =10 Gb. Let a RE-router cost 30 Watts (see Section 4.1) and
a link consume 200 Watts [9]. Assume that 50% of the traffic is redundant
and RE service is enabled at the router 6 and router 9, thus traffic flows
0 — 5 and 10 — 15 passing links (6, 7, 8, 9) are reduced to (10 + ¢) Gb
and (5 + €¢’) Gb where €, ¢ denotes the total size of the signatures used for
each flow. In reality, each signature is only a few bytes in size [4], therefore
e, € are small and the routing in Fig. 3a is feasible without any congestion.
As a result, the GreenRE solution allows to sleep 10 links and enables 2
RE-routers which saves (10 x 200 — 2 x 30) = 1940 Watts, compared to
8 x 200 = 1600 Watts of the EAR solution (Fig. 1b). It is noted that, in
some extreme cases, GreenRE even helps to find feasible routing solution
meanwhile it is impossible for the classical EAR. For example, if we add a
third demand from router 0 to 1 with volume 20 Gb, then Fig. 3b is a feasible
solution. However, without RE-routers, no feasible solution is found because
there is not enough capacity to route all the three demands.

3.1. Integer Linear Program (ILP) Formulation
The GreenRE model can be formulated as Integer Linear Program. We
present a network topology as an undirected graph G = (V, E). The set



of nodes V' describe routers and the edges (u,v) € E describe connections
between those routers. We note N(u) as a set of neighbor nodes of w in the
graph G. For each link (u,v) € E', we use a binary variable z,, to determine
if the link is used or not. If link (u,v) is active, two network interfaces at
router v and router v are enabled, this consumes PFE,, Watts. We define
%" as the percentage of unique (non redundant) traffic. For example, with
40% of redundancy (y** = 0.6), instead of sending a traffic demand 10 Gb,
we are sending only (6 + €) Gb after removing redundancy. For simplicity,
since € is small, we can ignore it in the formulation and a traffic flow from
which redundancy has been removed is called a compressed flow. It is noted
that, the notion «* only captures the intra-flow redundancy (and not the
inter-flow redundancy as presented in [10]). We note f5! (resp. ¢5) be the
fraction of normal flow (resp. compressed flow) on edge (u,v) corresponding
to the demand D** flowing from u to v. We define a binary variable w,
which is equal to 1 if router u performs RE (called RE-router and it consumes
additional PN, Watts). We consider three different scenarios of the problem:
(1) all routers on the network can perform RE, we can enable or disable RE
service on routers; (2) only a predefined set of routers on the network have
RE capability, other routers are normal routers and (3) there is a limited
number of RE-routers, the network operators should find where to place
them to increase energy efficiency for the network. We formulate the three
scenarios of the GreenRE problem as follows:

3.1.1. Scenario 1: All Routers are RE-capable Routers

min Z PE, Ty + Z PN,w, (1)
uvelR nav
-1 ifu=s,
st > (fh+gm—f—gt)=X1 ifu=t,VueV,(s,t)eD (2)
veN(u) 0 else
> (g — gt < wy Yu eV, (s,t) € D (3)
vEN (u)
> (gih —gih) < w, Yu€eV,(s,t)eD (4)
vEN (u)
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The objective function (1) is to minimize the power consumption of the
network represented by the number of active links and RE-routers. Con-
straints (2) establish flow conservation constraints. Constraints (3)-(4) are
used to determine whether RE service is enabled at router w or not. If it is
not (w, = 0), the router u only forwards flows without compression or de-
compression, then the amount of compressed flows incoming and outgoing
the router u is unchanged. It is noted that if a flow is compressed, it needs to
be decompressed somewhere on the way to its destination. This requirement
is implicitly embedded in the constraints (4). For instance, assume that a
destination node ¢ is not a RE-router (w; = 0). When a compressed flow
g*! reaches its destination, because t is the last node on its path, the flow
can not be decompressed. Consider the constraints (4), we have u = ¢, then
> ven(u ot > 0 (the compressed flow enters node ¢) and 3y, 98 = 0
(t is the destination node). Therefore, the constraint (4) is violated and
the flow should be decompressed before or at least at the destination node
(wy = 1). We consider an undirected link capacity model [15] in which the
capacity of a link is shared between the traffic in both directions. We use
constraints (5), where u denotes the link utilization in percentage, to limit
the available capacity of a link.

3.1.2. Scenario 2: a Predefined Set of Routers are RE-capable Routers
We define the following constraints:

w, =0 Yug V', V'cCV, (7)

where V' is a predefined subset of routers that have RE-capability, we force
all other routers to be normal routers (w, = 0). By adding (7) to the first
scenario (1)—(6), we have the second scenario of the GreenRE problem.

3.1.3. Scenario 3: a Limited Numbers of RE-routers
We add the following constraints to the first scenario (1)—(6):

> w, <M, (8)



where M is a parameter denoting the maximum number of RE-routers that
can be placed on the network. By using constraints (8), we allow any router
to perform RE. However, the total number of RE-routers on the network
should be less than M.

3.2. Heuristic Algorithm

Energy-aware routing problem is known to be NP-Hard [8, 16]. We have
presented a greedy heuristic called H-GreenRE for large network topologies
in our previous work [14]. Since the power consumption of a link is much
more compared to an enabled RE-router, the heuristic should give priority to
minimize the number of active links. The basic idea of H-GreenRFE is that we
first assume all routers are RE-enabled routers. Then, the traffic flows can
be compressed everywhere on the network. Based on this, we find feasible
routing solutions (without overloaded links) and then turn off the link with
minimum traffic load. This procedure is repeated until there is no link that
can be turned off. After that, we fix the routing and based on some rules
defined in [14], we disable unnecessary RE service on routers to save energy.
The main problem of H-GreenRFE is that, to find a feasible routing, we pick up
demand one by one and try to route it using shortest path routing. Thus, in
case the feasible routing is not a shortest path, H-GreenRE can not find it. In
this paper, we introduce a new heuristic algorithm based on the ILP formula-
tion (let’s call it Hypp-GreenRE). Using the ILP formulation, H;yp-GreenRE
tries all the possibilities to find a feasible routing if any, thus it is more ef-
ficient than the H-GreenRE (see Section 4.2.1). In the GreenRE problem,
to find optimal solution we must consider power consumption of both active
links and RE-routers at the same time. For the heuristic H;;p-GreenRE, we
divide the original problem into two sub-problems: (1) minimize the number
of active links and (2) minimize the number of RE-routers. Similar to the
H-GreenRE, the Hipp-GreenRE has two steps: the first step is to find as few
active links as possible (sub-problem 1), and then we minimize the number
of RE-routers in the second step (sub-problem 2).

Step 1 (sub-problem 1) is a constraint satisfaction problem returning a
feasible routing solution. We use the same framework for the three scenarios
of the GreenRE problem. For details, to find feasible solutions (Peyrent -
line 2 and P, - line 8), we set the objective function to min 0 and use the
constraints (2)—(6) for scenario 1. Similarly, scenario 2 (resp. scenario 3)
uses the constraints (2)—(7) (resp. constraints (2)—(6), (8)) and the objective
is min 0. In each round of the algorithm, we try to remove a link with low
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Algorithm 1: Inputs: A graph G = (V, E') with link capacity C., a set
of traffic demands and non-redundant rates.
1 Step 1 - Minimize number of active links by removing low loaded links:

2 Find a feasible routing solution using the ILP called P_current;
3 Let S be an ordered list initialized with the links of G sorted by
increasing traffic load in P_current;

4 Let R := () be the set of links that cannot be removed;

5 repeat

6 e := S.lowest_loaded_link() such that e ¢ R;

7 S = S\{e};

8 if a feasible routing P new on E\{e} is found then

9 if P_new has less active links than P_current then
10 P_current := P_new;

11 S := list of links sorted by increasing traffic load in P_new;
12 E = E\{e};

13 end

14 else

15 | R:=RU{e};

16 end

17 until (S =10) or (R=S5);

18 Return the final feasible routing solution (if any);

19 Step 2 - Find feasible solution minimizing the number of RE-routers
on the set of active links £ found in Step 1.

load (line 6 - 7) and then find a new feasible routing (P, - line 8) using less
active links. The idea behind this algorithm is that we try to put into sleep
mode the low loaded links and to accommodate their traffic on other links in
order to reduce the total number of active links. Observe that unused links
(i.e. links that do not carry traffic) are not considered in the set S since the
removal of such a link will result in a routing P_new equal to P_current. To
further reduce the computation time, we can consider additional heuristic.
For instance, while removing a low loaded link (line 6 - 7), we can also set
the variable z,, associated to a heavily loaded link to 1 so that it can speed
up the resolution for finding P, (line 8). Indeed, such high loaded link will
certainly be part of the final solution. Since we relax the objective function
and the goal is just to justify whether a set of constraints is feasible or not,



it is quite fast to find P.,qrene and Prep. In our simulations, the execution
time of Algorithm 1 (including the two steps) is less than one hour for the

tested network topologies (see Section 4).

After Step 1, if a feasible routing is found, and so a set of active links, we
proceed to Step 2 (sub-problem 2) to minimize the number of enabled RE-
routers. More precisely, we use again the ILP formulation (of the scenario
we want to solve) in which the objective function is set to min)_ ., wy.
Furthermore, we set all binary variables associated to active links to 1 and

the others to 0 (this speed-up the resolution of the ILP).
4. Experiment and Simulation Results

4.1. Energy Consumption with WOC

Several results of bandwidth savings using WOC can be found in [4].
We have also performed experiments on the network platform of the project
Network Boost at Orange Labs (the full figure of the test-bed can be found in
[17]). We installed two WOCs, each at the access link of the two sites (let’s
call them site A and site B). These two sites are connected via a backbone
composed of 4 routers. We setup FTP connections for uploading files from
site A to site B. As shown in Fig. 4a, power consumption of the WOC is
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Figure 4: Power consumption of the WOC

increased (from 26 Watts to 34 Watts) with the number of concurrent FTP
sessions. For the next experiment, we keep only one FTP session and let
the WOC perform RE for 10 hours in which the sizes of uploaded files are
increased. The results show that the WOC consumes around 30 Watts on
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average (Fig. 4b). Therefore, for sake of simplicity, we use an average value
of power consumption (30 Watts) to represent additional cost for the router
to perform RE.

4.2. Simulation Results with GreenRE

We solve the GreenRE model with IBM CPLEX 12.4 solver [18]. All
computations were carried out on a 2.7 Ghz Intel Core i7 with 8 GB RAM.
We studied ten classical real network topologies extracted from SNDLib [19].
Their sizes span from 15 to 54 nodes and from 22 to 89 edges, as summarized
in Table 1. According to the results of the works mentioned in Section 2.2,
we use redundancy rates equal to 50% (high redundancy, v = 50%), 25%
(medium redundancy, v = 75%) and 10% (low redundancy, v = 90%). For
worst-case scenario and for comparison with previous work [8, 14], all links
are set up with the same capacity C' and the demands are all-to-all (one
router has to send traffic to all remaining routers on the network) with the
same traffic volume D for each demand.

4.2.1. Comparison with the Heuristic H-GreenRE in [14]
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Figure 5: Comparison of \,,;n,re between H;jp-GreenRE and H-GreenRE

We propose in this paper a new heuristic based on the ILP formulation
called H;pp-GreenRE. To compare with the heuristic H-GreenRE proposed
in the previous work [14], two simulation scenarios (with v = 50%) have been
done for the ten network topologies (we sort the networks in increasing order
of the number of nodes).

First, we find the minimum values of capacity /demand ratio A,,;,re that
allow for each heuristic algorithm to find a feasible routing solution with the
support of RE-routers. Note that, A\ represents the level of traffic load on
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Figure 6: Comparison of energy savings between H;;p-GreenRE and H-GreenRE

the network. Small value of A means that the traffic load on the network
is high (e.g. traffic at peak hours), thus it is hard to find feasible solution
because of the lack of capacity (refer to the example in Fig. 3b). Therefore,
the heuristic algorithm that can find feasible routing with smaller value of
AminrE 1S the better one. To compute \,;nrE, we first fix the demand value,
e.g. D = 1. Then, starting with a large capacity value, e.g. C' = 1000,
we decrease the value of C' and test the heuristic until we get the minimum
value of C' that is still possible to find a feasible solution. Let’s call this value
is Cinin, then we have A\inre = Chin. Fig. 5 shows that H;pp-GreenRE
can find feasible solutions with smaller values of \,,;,rr than H-GreenRE.
For example, for the Atlanta network, Hjyp-GreenRE finds a solution with
Aminge = 19 while H-GreenRE is with \,;,rr = 22: that is, for example,
for a link capacity of 10 Gbit/sec, the first heuristic succeeds in routing an
all-to-all demand of 10/19 =0.53 Gbit/sec for each demand and the second
heuristic, a demand of only 10/22 = 0.45 Gbit/sec. In summary, Hjp-
GreenRE finds feasible solutions close to the lower bounds of A,,;, found in
[8]. The best improvement is on Zib54 network: A\,,rep = 147 (for H;pp-
GreenRE) in comparison with A;,re = 168 (for H-GreenRE).

We show next the energy savings for the ten networks. We use the value
of A\inre that allows for H-GreenRE to find feasible routing solution for each
network (the second column in Fig. 5). If a network has dense links, there
are more chances to redirect traffic and put links into sleep mode, thus more
energy can be saved. As shown in Fig. 6, H;pp-GreenRE again outperforms
H-GreenRE for all the networks. Energy efficiency can be increased from 2%
(Atlanta network) to 19.8% (Pioro40 network).

12



4.2.2. Energy Savings for Atlanta Network
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Figure 7: Simulation results for Atlanta network

In this subsection, we present simulation results for Atlanta network. In
Fig. 7a, with the same redundancy rate (7 = 50%), we vary capacity /demand
ratios and compare between the ILP-EAR without RE-routers (given by [8]),
the ILP with RE-routers (the formulation (1) - (6): ILP-GreenRE) and the
heuristic with RE-routers (H;p-GreenRE). Even for small network like At-
lanta, CPLEX also takes some hours to find an optimal solution when the
capacity /demand ratios are high (e.g. A > 48). It is noted that when A < 48,
it is possible to find an optimal solution within one hour. We limit the solv-
ing time to one hour for all instances of Atlanta network corresponding to
different capacity/demand ratios. In average, the optimality gap is within
10% for all the best solutions. The heuristic is quite fast, it takes less than
10 seconds to find a solution. The x—axis in Fig. 7a represents the capac-
ity/demand ratio A and the y—axis is energy savings in percentage. As shown
in Fig. 7a, without RE-router (ILP-EAR), there is no feasible routing solution
and hence, no energy is saved if A < 38. When X\ increases, links have more
bandwidth to aggregate traffic, the solutions with and without RE-router
converge to the same amount of energy savings. In general, the heuristic
with RE-routers works well and approximates to the results of ILP-GreenRE
(the max gap is 3.8%).

In Fig. 7b, we evaluate energy savings for Atlanta network with different
level of redundancy. It is clear that when traffic redundancy is high, e.g.
v = 50%, more traffic flows are aggregated and thus, more links can be turned
off to save energy. Similarly, when v = 75% and v = 90% (corresponding
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to 25% and 10% of traffic redundancy), less energy can be saved. These
remarks can be seen in Fig. 7b where the gaps between ILP-GreenRE and
ILP-FAR are reducing when 7 is increasing. It is noted that ILP-GreenRE
should be at least as good as ILP-FAR. It is because the objective of ILP-
GreenRE is to minimize energy consumption for the network. In case the
redundancy elimination does not help to turn off more links, ILP-GreenRE
does not enable RE service on router (even it helps to reduce the traffic load).
Therefore, in the worst case scenario (redundancy rate is zero or v = 100%),
ILP-GreenRFE has no RE-enabled router and the routing solution is the same
as in ILP-FAR.

4.2.3. Energy Savings for the Ten Classical Networks

Traffic volume (capacity/demand ratio \)

Network [V | E|| A\min with RE-router without RE-router
/\min ‘ 2)\min ‘ 3/\m1',n )\min ‘ 2/\mz’n ‘ 3)\mm
Atlanta 15 22 38 | 27.7% | 34.3% | 36.4% || 0% 32% 36%
New York 16 49 15 | 52.2% | 62.9% | 65.8% || 2% 59% 63%
Germanyl7 | 17 26 44 1 30.6% | 36.7% | 37.3% || 0% 35% 39%
France 25 45 67 | 39.2% | 43.4% | 46% 0% 42% 44%
Norway 27 51 75 | 37.7% | 45.6% | 47.8% || 12% | 43% 47%
Nobel EU 28 41 131 | 29.2% | 33.1% | 34.2% || 12% | 32% 34%
Cost266 37 57 175 | 30.6% | 35% | 36.3% || 3.5% | 32% 35%
Giul39 39 86 85 | 42.5% | 50.5% | 53.3% || 0% 45% 50%
Pioro40 40 89 153 | 50.5% | 53.7% | 55.2% || 0% 53% 54%
Zibb4 54 80 294 | 27.5% | 30.8% | 32.8% || 0% 30% 33%

Table 1: Gain of energy consumption (in %)

We present in Table 1 energy gain for ten classical network topologies
using H;;p-GreenRE and H-EAR - the heuristic without RE-routers found
in [8]. Different from A,;nre in Section 4.2.1, we use A\, be the smallest
value of capacity/demand ratio that allows to find a feasible route for all
the demands without RE-router (found in [8]). In the simulations, a range of
A = { Mnin, 2 min, 3Amin } 1s used to represent high (e.g. traffic at peak hours),
medium and low traffic load (e.g. traffic at night) on the networks. As shown
in Table 1, with RE-routers, it starts to save a large amount of energy (in
average 37%) even with A = \,;,. Recall that routing with RE-routers is
possible even with A < \,,;,, meanwhile no feasible solution is found without
RE-router. When A is large enough, it is not necessary to have RE-routers
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on the network, therefore both the solutions (with and without RE-router)
converge to almost the same value of gains in energy savings.

4.2.4. Energy Savings for Scenario 2 and Scenario 3 of the GreenRE Problem

30

20 20

energy savings (%)
energy savings (%)

Scenario 3: limited RE-routers —&— Scenario 3: limited RE-routers —&—
Scenario 2: highest degree nodes —&— Scenario 2: highest degree nodes —&—
15 ‘ . Scenario 2: lowest degree nodes —&-— 15 ) . Scenario 2: lowest degree nodes —8-—
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
percentage of RE-routers (%) percentage of RE-routers (%)
(a) Atlanta network (b) EU-Nobel network

Figure 8: Energy savings with limited RE-routers vs. a subset of capable RE-routers

In this section, we evaluate energy savings of scenario 2 (a predefined
subset of RE-capable routers) and scenario 3 (a limited numbers of RE-
capable routers). We set link capacity and demand corresponding to A, in
Section 4.2.3. The x-axis of Fig. 8 is the percentage of RE-capable routers on
the network. For instance, with scenario 3, we find the routing solution that
minimizes energy consumption while there are at most (z x |V|) RE-routers
on the network. For scenario 2, we place (z x |V|) RE-capable routers on
(1) highest degree nodes or (2) lowest degree nodes in graph G. As shown
in Fig. 8, the scenario 3 always outperforms the scenario 2 since it can find
best positions to place RE-capable routers. For instance, in Atlanta network
with a maximum of 6 RE-routers, the max gap is 4.5% and there are 4 RE-
routers at the highest degree nodes and the two others are at the medium
and the lowest degree nodes. Another important observation we found in
the scenario 2 is that, placing RE-routers on high degree nodes gives better
results in energy savings. It is because placing RE-capable routers on high
degree nodes helps to reduce traffic load and gives more chances to redirect
traffic on a few links, allowing other links on these nodes to sleep.
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5. Discussion

While the results in this work show a great improvement on energy effi-
ciency for backbone networks, there are still a number of issues of EAR in
practice that we discuss below. Nowadays, network operators do not like to
turn-off links and change routing. As a matter of fact,

the convergence between two routing configurations is usually long and
can take up to several seconds for some distributed protocols (e.g. for
BGP), leading to perturbations for the network traffic.

even signaling takes non-negligible time: a simple control message may
take tens of milliseconds to traverse the network and reach a given
router.

However, in our study, we are in a simplified configuration as we consider:

Preplanned changes: our approach in this paper is completely off-line
as we are studying a single traffic matrix. We are not in a context
of rapid changes for the routing. Considering a given network and an
estimation of the traffic, we can precompute a set of configurations
depending on different time instants for a whole day. The number of
configurations depends on several parameters that need to be discussed
with the network operator and optimized, e.g., link over-dimensioning,
QoS, length of paths, number of desired routing changes per day, etc.
For instance, as shown in [20], only few configurations (two or three
per day) are enough to significantly save energy. Similarly, the authors
in [21] suggest to use only two network configurations for a daily time.
During peak hours, all the links in the network are active while EAR
(with sleep links) is considered only in off-peak time to save energy.

Intra-domain network: our work focus on intra-domain network, which
is a simpler case as the routing changes do not need to be propagated to
other domains by inter-domain routing protocols such as BGP. More-
over, the network operator can manage its own domain without explicit
cooperation with other domains and update metrics for the routing
protocol, turn on/off links, or set up a centralized entity in order to
perform a better optimization with a complete view of the network and
the traffic.
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e Centralized control (SDN): within a network operator domain, an SDN
solution, like Openflow, can be implemented. OpenFlow is a promising
method to implement EAR in a network [22, 23]. Without setting
entries manually, a centralized controller can collect traffic matrices,
perform routing calculation in advance and then trigger an installation
of new routing rules on routers at the precomputed time based on the
planification. Openflow will make energy-aware solutions possible by
allowing to switch on and off equipments based on traffic measures.
Such a system will experience a much lower routing convergence time
than existing distributed protocols [24].

Even if our work focus on a simplified version of the whole problem,
we discuss below the problems that may arise when passing from a routing
configuration to another, or if unexpected events appear.

- Transition between two configurations. We must ensure that the network
behaves correctly between two consecutive transitions. In [24], the authors
describe a mechanism using Openflow for consistent network updates in
which the packets are processed either with the old or the new configura-
tion but never with a mixture of the two. One of the ideas presented in the
paper is to pre-install the new routing rules while keeping the old routing in
place. When all flows matching a given old rule finish, the new routing con-
figuration takes effect. In [25], the authors use OSPF routing protocol and
propose incremental updates of links (turning on and off links is also con-
sidered) in order to ensure a loop-free transition between two configurations.
In [26], we proposed methods to limit OSPF changes between two consec-
utive routing configurations to reduce network oscillation during transient
time. Moreover, as shown in [27], an appropriate scheduling and prioritiza-
tion in rule update can help to reduce the side effects in transitioning between
network configurations.

- Unexpected events. In case of traffic burstiness, the network should react
quickly in order to avoid packet losses. Similarly to what is actually done
by telecommunication operators, our model integrates over provisioning on
links (parameter 4 in the linear program). This allows to tolerate some traffic
increase without changing the network configuration. If the capacity on links
is not sufficient enough, then the SDN controller can send signals to wake up
all the links and apply the routing configuration for peak hours.
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In this case, the delay will include the time for the controller to contact
all the routers, and the routers to change their routing configurations. This
will be the worst-case scenario implying the longer delay.

- QoS degradation and routing loops. Another issue of EAR is QoS degra-
dation during transient times such as routing loops. Moreover, during these
periods, packets may arrive out of order which causes problems for TCP,
degrading the perceived QoS for end-users [28]. These effects can be lim-
ited if two consecutive routing configurations contain a minimal number of
changes. Moreover, we believe that these periods will be short (in the order
of seconds) and will be acceptable in view of the gain in energy savings.

- Delay for (de)/activating links. The time required for sleeping/activating a
link on router is substantial. Indeed, commercial routers available today do
not integrate this sleep mode functionality yet. However, there are on-going
works on this issue [29]. For instance, the works in [30, 31] show that it is
possible to put a link into sleep mode and wake it up in short time (e.g. less
than 5us for I0GBASE-T links). Thus, we can expect that these advances
may come in the future, especially if they offer big energy savings, and will
be negligeable. However, this delay is not only for the material to be turned-
on but also for the controller to contact all the routers, and the routers to
change their routing table.

To sum up, turning-off links in EAR will cause unavoidable overhead,
especially in transient time between different routing configurations. How-
ever, if the planification of these changes is done with a reasonable number of
configurations per day, with few changes between two configurations in order
to limit the routing loops and the network oscillations, and with an ordered
list of routing changes to be sent to the routers by the SDN controller, we
can expect that these drawbacks would be acceptable in view of the energy
savings.

6. Conclusion

To the best of our knowledge, GreenRE is the first work considering
redundancy elimination as a complementary help for energy-aware routing
problem. We formulate the problem as Mixed Integer Linear Program and
propose greedy heuristic algorithms. The simulations on several network
topologies show a significant gain in energy savings with GreenRE. For future
work, we will consider a more realistic model in which data redundancy rates
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and traffic demand volumes variate based on real life traffic traces. Moreover,
we plan to study the inter-flow redundancy as it could further reduce network
traffic.

Acknowledgment

This work has been done in collaboration with Network Boost Project

(Orange Labs) and partly funded by the ANR DIMAGREEN. The authors
would like to thank Didier Leroy (Orange Labs), Yaning Liu (JCP-Consult
R&D) and David Coudert (Project COATI) for their advices and support.

References

1]

2]

=S

ENET)

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright,
“Power Awareness in Network Design and Routing”, in: IEEE Interna-
tional Conference on Computer Communications (INFOCOM), 2008.
P. Mahadevan, P. Sharma, S. Banerjee, “A Power Benchmarking Frame-
work for Network Devices”, in: International Conferences on Networking
(IFTP NETWORKING), 2009, pp. 795-808.

BlueCoat: WAN Optimization, http://www.bluecoat.com/.

T. J. Grevers, J. Christner, “Application Acceleration and WAN Opti-
mization Fundamentals”, in: Cisco Press, 2007.

http://www.riverbed.com/us/solutions/wan optimization/.

R. Bolla, R. Bruschi, F. Davoli, F. Cucchietti, “Energy Efficiency in
the Future Internet: A Survey of Existing Approaches and Trends in
Energy-Aware Fixed Network Infrastructures”, IEEE Communication
Surveys and Tutorials 13 (2011) 223 — 244.

A. P. Bianzino, C. Chaudet, D. Rossi, J. Rougier, “A Survey of Green
Networking Research”, IEEE Communication Surveys and Tutorials 14
(2012) 3 — 20.

F. Giroire, D. Mazauric, J. Moulierac, B. Onfroy, “Minimizing Rout-
ing Energy Consumption: from Theoretical to Practical Results”, in:
IEEE/ACM Green Computing and Communications (GreenCom), 2010,
pp. 252-259.

L. Chiaraviglio, M. Mellia, F. Neri, “Minimizing ISP Network Energy
Cost: Formulation and Solutions”, IEEE/ACM Transaction in Network-
ing 20 (2011) 463 — 476.

19



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. Anand, A. Gupta, A. Akella, S. Seshan, S. Shenker, “Packet Caches
on Routers: the Implications of Universal Redundant Traffic Elimina-
tion”, in: ACM Special Interest Group on Data Communication (SIG-
COMM), 2008, pp. 219-230.

A. Anand, V. Sekar, A. Akella, “SmartRE: an Architecture for Co-
ordinated Network-wide Redundancy Elimination”, in: ACM Special
Interest Group on Data Communication (SIGCOMM), 2009, pp. 87-98.
Y. Song, K. Guo, L. Gao, “Redundancy-aware Routing with Limited
Resources”, in: International Conference on Computer Communications
and Networks (ICCCN), 2010, pp. 1-6.

N. T. Spring, D. Wetherall, “A Protocol-Independent Technique for
Eliminating Redundant Network Traffic”, in: ACM Special Interest
Group on Data Communication (SIGCOMM), 2000.

F. Giroire, J. Moulierac, T. K. Phan, F. Roudaut, “Minimization of
Network Power Consumption with Redundancy Elimination”, in: Inter-
national Conferences on Networking (IFIP NETWORKING), 2012, pp.
247-258.

C. Raack, A. M. C. A. Koster, S. Orlowski, R. Wessily, “On Cut-based
Inequalities for Capacitated Network Design Polyhedra”, Networks 57
(2011) 141 — 156.

A. Koster, T. K. Phan, M. Tieves, “Extended Cutset Inequalities for
the Network Power Consumption Problem”, in: International Network
Optimization Conference (INOC), Electronic Notes in Discrete Mathe-
matics, 2013, pp. 69-76.
www-sop.inria.fr/mascotte/rapports_stages/KhoaPhan
_internship-2011.pdf.

IBM ILOG, CPLEX Optimization Studio 12.4.

S. Orlowski, R. Wessaly, M. Piéro, A. Tomaszewski, SNDIib 1.0 - sur-
vivable network design library, Networks 55 (3) (2010) 276-286.

URL http://sndlib.zib.de

L. Chiaraviglio, A. Cianfrani, E. L. Rouzic, M. Polverini, “Sleep
Modes Effectiveness in Backbone Networks with Limited Configura-
tions”, Computer Networks 57 (2013) 2931-2948.

F. Francois, N. Wang, K. Moessner, S. Georgoulas, K. Xu, “On IGP Link
Weight Optimization for joint Energy Efficiency and Load Balancing
Improvement”, Computer Communications.

20



22]

23]

[24]

[25]

[26]

[27]

28]

X. Wang, Y. Yao, X. Wang, K. Lu, Q. Cao, “CARPO: Correlation-
Aware Power Optimization in Data Center Networks”, in: Annual Joint

Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), 2012.

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, N. McKeown, “ElasticTree: Saving Energy in Data Center
Networks”, in: USENIX conference on Networked systems design and
implementation (NSDI), 2010.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, D. Wamker, Ab-
stractions for network update, in: ACM Special Interest Group on Data
Communication (SIGCOMM), 2012.

P. Francois, M. Shand, O. Bonaventure, Disruption free topology recon-
figuration in ospf networks, IEEE INFOCOM 2007.

J. Moulierac, T. K. Phan, “Optimizing  IGP  Link
Weights  for  Energy-efficiency in a  Changing  World”,
http://hal.inria.fr/hal-00988882, iNRIA Research Report
(2014).

P. Peresini, M. Kuzniar, M. Canini, D. Kostic, “ESPRES: Easy Schedul-
ing and Prioritization for SDN”, in: Open Networking Summit, 2014.
K. C. Leung, V. O. K. Li, D. Yang, “An Overview of Packet Reorder-
ing in Transmission Control Protocol (TCP): Problems, Solutions, and
Challenges”, IEEE Transactions on Parallel and Distributed Systems 18
(2007) 522 — 535.

Econet project, http://www.econet-project.eu.

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi,
J. A. Maestro, “IEEE 802.3az: The Road to Energy Efficient Ethernet”,
IEEE Communications Magazine 48 (2010) 50-56.

R. Bolla, R. Bruschi, A. Carrega, F. Davoli, P. Lago, “A Closed-Form
Model for the IEEE 802.3az Network and Power Performance”, IEEE
Journal on Selected Areas in Communications 32 (2014) 16 — 27.

21



