10,974 research outputs found

    On Hardness Assumptions Needed for "Extreme High-End" PRGs and Fast Derandomization

    Get PDF
    The hardness vs. randomness paradigm aims to explicitly construct pseudorandom generators G:{0,1}^r ? {0,1}^m that fool circuits of size m, assuming the existence of explicit hard functions. A "high-end PRG" with seed length r = O(log m) (implying BPP=P) was achieved in a seminal work of Impagliazzo and Wigderson (STOC 1997), assuming the high-end hardness assumption: there exist constants 0 < ? < 1 < B, and functions computable in time 2^{B ? n} that cannot be computed by circuits of size 2^{? ? n}. Recently, motivated by fast derandomization of randomized algorithms, Doron et al. (FOCS 2020) and Chen and Tell (STOC 2021), construct "extreme high-end PRGs" with seed length r = (1+o(1))? log m, under qualitatively stronger assumptions. We study whether extreme high-end PRGs can be constructed from the corresponding hardness assumption in which ? = 1-o(1) and B = 1+o(1), which we call the extreme high-end hardness assumption. We give a partial negative answer: - The construction of Doron et al. composes a PEG (pseudo-entropy generator) with an extractor. The PEG is constructed starting from a function that is hard for MA-type circuits. We show that black-box PEG constructions from the extreme high-end hardness assumption must have large seed length (and so cannot be used to obtain extreme high-end PRGs by applying an extractor). To prove this, we establish a new property of (general) black-box PRG constructions from hard functions: it is possible to fix many output bits of the construction while fixing few bits of the hard function. This property distinguishes PRG constructions from typical extractor constructions, and this may explain why it is difficult to design PRG constructions. - The construction of Chen and Tell composes two PRGs: G?:{0,1}^{(1+o(1)) ? log m} ? {0,1}^{r? = m^{?(1)}} and G?:{0,1}^{r?} ? {0,1}^m. The first PRG is constructed from the extreme high-end hardness assumption, and the second PRG needs to run in time m^{1+o(1)}, and is constructed assuming one way functions. We show that in black-box proofs of hardness amplification to 1/2+1/m, reductions must make ?(m) queries, even in the extreme high-end. Known PRG constructions from hard functions are black-box and use (or imply) hardness amplification, and so cannot be used to construct a PRG G? from the extreme high-end hardness assumption. The new feature of our hardness amplification result is that it applies even to the extreme high-end setting of parameters, whereas past work does not. Our techniques also improve recent lower bounds of Ron-Zewi, Shaltiel and Varma (ITCS 2021) on the number of queries of local list-decoding algorithms

    Hardness Amplification of Optimization Problems

    Get PDF
    In this paper, we prove a general hardness amplification scheme for optimization problems based on the technique of direct products. We say that an optimization problem ? is direct product feasible if it is possible to efficiently aggregate any k instances of ? and form one large instance of ? such that given an optimal feasible solution to the larger instance, we can efficiently find optimal feasible solutions to all the k smaller instances. Given a direct product feasible optimization problem ?, our hardness amplification theorem may be informally stated as follows: If there is a distribution D over instances of ? of size n such that every randomized algorithm running in time t(n) fails to solve ? on 1/?(n) fraction of inputs sampled from D, then, assuming some relationships on ?(n) and t(n), there is a distribution D\u27 over instances of ? of size O(n??(n)) such that every randomized algorithm running in time t(n)/poly(?(n)) fails to solve ? on 99/100 fraction of inputs sampled from D\u27. As a consequence of the above theorem, we show hardness amplification of problems in various classes such as NP-hard problems like Max-Clique, Knapsack, and Max-SAT, problems in P such as Longest Common Subsequence, Edit Distance, Matrix Multiplication, and even problems in TFNP such as Factoring and computing Nash equilibrium

    Improved Extractors for Recognizable and Algebraic Sources

    Get PDF

    A PCP Characterization of AM

    Get PDF
    We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approximation version is complete for (the promise version of) the complexity class AM. This gives a `PCP characterization' of AM analogous to the PCP Theorem for NP. Similar characterizations have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the result for AM might be of particular significance for attempts to derandomize this class. To test this notion, we pose some `Randomized Optimization Hypotheses' related to our stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately, the hypotheses appear over-strong, and we present evidence against them. In the process we show that, if some language in NP is hard-on-average against circuits of size 2^{Omega(n)}, then there exist hard-on-average optimization problems of a particularly elegant form. All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of Proximity, and demonstrate their versatility. We also use known results on randomness-efficient soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks.Comment: 18 page

    Average-Case Complexity

    Full text link
    We survey the average-case complexity of problems in NP. We discuss various notions of good-on-average algorithms, and present completeness results due to Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then all problems in NP are easy-on-average with respect to all samplable distributions. Applying the theory to natural distributional problems remain an outstanding open question. We review some natural distributional problems whose average-case complexity is of particular interest and that do not yet fit into this theory. A major open question whether the existence of hard-on-average problems in NP can be based on the P\neqNP assumption or on related worst-case assumptions. We review negative results showing that certain proof techniques cannot prove such a result. While the relation between worst-case and average-case complexity for general NP problems remains open, there has been progress in understanding the relation between different ``degrees'' of average-case complexity. We discuss some of these ``hardness amplification'' results

    A Nearly Optimal Lower Bound on the Approximate Degree of AC0^0

    Full text link
    The approximate degree of a Boolean function f ⁣:{1,1}n{1,1}f \colon \{-1, 1\}^n \rightarrow \{-1, 1\} is the least degree of a real polynomial that approximates ff pointwise to error at most 1/31/3. We introduce a generic method for increasing the approximate degree of a given function, while preserving its computability by constant-depth circuits. Specifically, we show how to transform any Boolean function ff with approximate degree dd into a function FF on O(npolylog(n))O(n \cdot \operatorname{polylog}(n)) variables with approximate degree at least D=Ω(n1/3d2/3)D = \Omega(n^{1/3} \cdot d^{2/3}). In particular, if d=n1Ω(1)d= n^{1-\Omega(1)}, then DD is polynomially larger than dd. Moreover, if ff is computed by a polynomial-size Boolean circuit of constant depth, then so is FF. By recursively applying our transformation, for any constant δ>0\delta > 0 we exhibit an AC0^0 function of approximate degree Ω(n1δ)\Omega(n^{1-\delta}). This improves over the best previous lower bound of Ω(n2/3)\Omega(n^{2/3}) due to Aaronson and Shi (J. ACM 2004), and nearly matches the trivial upper bound of nn that holds for any function. Our lower bounds also apply to (quasipolynomial-size) DNFs of polylogarithmic width. We describe several applications of these results. We give: * For any constant δ>0\delta > 0, an Ω(n1δ)\Omega(n^{1-\delta}) lower bound on the quantum communication complexity of a function in AC0^0. * A Boolean function ff with approximate degree at least C(f)2o(1)C(f)^{2-o(1)}, where C(f)C(f) is the certificate complexity of ff. This separation is optimal up to the o(1)o(1) term in the exponent. * Improved secret sharing schemes with reconstruction procedures in AC0^0.Comment: 40 pages, 1 figur
    corecore