1,147,395 research outputs found

    Cyclic Orbit Codes

    Full text link
    In network coding a constant dimension code consists of a set of k-dimensional subspaces of F_q^n. Orbit codes are constant dimension codes which are defined as orbits of a subgroup of the general linear group, acting on the set of all subspaces of F_q^n. If the acting group is cyclic, the corresponding orbit codes are called cyclic orbit codes. In this paper we give a classification of cyclic orbit codes and propose a decoding procedure for a particular subclass of cyclic orbit codes.Comment: submitted to IEEE Transactions on Information Theor

    A Complete Characterization of Irreducible Cyclic Orbit Codes and their Pl\"ucker Embedding

    Full text link
    Constant dimension codes are subsets of the finite Grassmann variety. The study of these codes is a central topic in random linear network coding theory. Orbit codes represent a subclass of constant dimension codes. They are defined as orbits of a subgroup of the general linear group on the Grassmannian. This paper gives a complete characterization of orbit codes that are generated by an irreducible cyclic group, i.e. a group having one generator that has no non-trivial invariant subspace. We show how some of the basic properties of these codes, the cardinality and the minimum distance, can be derived using the isomorphism of the vector space and the extension field. Furthermore, we investigate the Pl\"ucker embedding of these codes and show how the orbit structure is preserved in the embedding.Comment: submitted to Designs, Codes and Cryptograph

    Characterisation of a family of neighbour transitive codes

    Get PDF
    We consider codes of length mm over an alphabet of size qq as subsets of the vertex set of the Hamming graph Γ=H(m,q)\Gamma=H(m,q). A code for which there exists an automorphism group X≤Aut(Γ)X\leq Aut(\Gamma) that acts transitively on the code and on its set of neighbours is said to be neighbour transitive, and were introduced by the authors as a group theoretic analogue to the assumption that single errors are equally likely over a noisy channel. Examples of neighbour transitive codes include the Hamming codes, various Golay codes, certain Hadamard codes, the Nordstrom Robinson codes, certain permutation codes and frequency permutation arrays, which have connections with powerline communication, and also completely transitive codes, a subfamily of completely regular codes, which themselves have attracted a lot of interest. It is known that for any neighbour transitive code with minimum distance at least 3 there exists a subgroup of XX that has a 22-transitive action on the alphabet over which the code is defined. Therefore, by Burnside's theorem, this action is of almost simple or affine type. If the action is of almost simple type, we say the code is alphabet almost simple neighbour transitive. In this paper we characterise a family of neighbour transitive codes, in particular, the alphabet almost simple neighbour transitive codes with minimum distance at least 33, and for which the group XX has a non-trivial intersection with the base group of Aut(Γ)Aut(\Gamma). If CC is such a code, we show that, up to equivalence, there exists a subcode Δ\Delta that can be completely described, and that either C=ΔC=\Delta, or Δ\Delta is a neighbour transitive frequency permutation array and CC is the disjoint union of XX-translates of Δ\Delta. We also prove that any finite group can be identified in a natural way with a neighbour transitive code.Comment: 30 Page

    A Novel Construction of Multi-group Decodable Space-Time Block Codes

    Full text link
    Complex Orthogonal Design (COD) codes are known to have the lowest detection complexity among Space-Time Block Codes (STBCs). However, the rate of square COD codes decreases exponentially with the number of transmit antennas. The Quasi-Orthogonal Design (QOD) codes emerged to provide a compromise between rate and complexity as they offer higher rates compared to COD codes at the expense of an increase of decoding complexity through partially relaxing the orthogonality conditions. The QOD codes were then generalized with the so called g-symbol and g-group decodable STBCs where the number of orthogonal groups of symbols is no longer restricted to two as in the QOD case. However, the adopted approach for the construction of such codes is based on sufficient but not necessary conditions which may limit the achievable rates for any number of orthogonal groups. In this paper, we limit ourselves to the case of Unitary Weight (UW)-g-group decodable STBCs for 2^a transmit antennas where the weight matrices are required to be single thread matrices with non-zero entries in {1,-1,j,-j} and address the problem of finding the highest achievable rate for any number of orthogonal groups. This special type of weight matrices guarantees full symbol-wise diversity and subsumes a wide range of existing codes in the literature. We show that in this case an exhaustive search can be applied to find the maximum achievable rates for UW-g-group decodable STBCs with g>1. For this purpose, we extend our previously proposed approach for constructing UW-2-group decodable STBCs based on necessary and sufficient conditions to the case of UW-g-group decodable STBCs in a recursive manner.Comment: 12 pages, and 5 tables, accepted for publication in IEEE transactions on communication
    • …
    corecore