10 research outputs found

    On Graph Crossing Number and Edge Planarization

    Full text link
    Given an n-vertex graph G, a drawing of G in the plane is a mapping of its vertices into points of the plane, and its edges into continuous curves, connecting the images of their endpoints. A crossing in such a drawing is a point where two such curves intersect. In the Minimum Crossing Number problem, the goal is to find a drawing of G with minimum number of crossings. The value of the optimal solution, denoted by OPT, is called the graph's crossing number. This is a very basic problem in topological graph theory, that has received a significant amount of attention, but is still poorly understood algorithmically. The best currently known efficient algorithm produces drawings with O(log2n)(n+OPT)O(\log^2 n)(n + OPT) crossings on bounded-degree graphs, while only a constant factor hardness of approximation is known. A closely related problem is Minimum Edge Planarization, in which the goal is to remove a minimum-cardinality subset of edges from G, such that the remaining graph is planar. Our main technical result establishes the following connection between the two problems: if we are given a solution of cost k to the Minimum Edge Planarization problem on graph G, then we can efficiently find a drawing of G with at most \poly(d)\cdot k\cdot (k+OPT) crossings, where dd is the maximum degree in G. This result implies an O(n\cdot \poly(d)\cdot \log^{3/2}n)-approximation for Minimum Crossing Number, as well as improved algorithms for special cases of the problem, such as, for example, k-apex and bounded-genus graphs

    The Effect of Planarization on Width

    Full text link
    We study the effects of planarization (the construction of a planar diagram DD from a non-planar graph GG by replacing each crossing by a new vertex) on graph width parameters. We show that for treewidth, pathwidth, branchwidth, clique-width, and tree-depth there exists a family of nn-vertex graphs with bounded parameter value, all of whose planarizations have parameter value Ω(n)\Omega(n). However, for bandwidth, cutwidth, and carving width, every graph with bounded parameter value has a planarization of linear size whose parameter value remains bounded. The same is true for the treewidth, pathwidth, and branchwidth of graphs of bounded degree.Comment: 15 pages, 6 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    String graphs and separators

    Full text link
    String graphs, that is, intersection graphs of curves in the plane, have been studied since the 1960s. We provide an expository presentation of several results, including very recent ones: some string graphs require an exponential number of crossings in every string representation; exponential number is always sufficient; string graphs have small separators; and the current best bound on the crossing number of a graph in terms of the pair-crossing number. For the existence of small separators, unwrapping the complete proof include generally useful results on approximate flow-cut dualities.Comment: Expository paper based on course note

    An Algorithm for the Graph Crossing Number Problem

    Full text link
    We study the Minimum Crossing Number problem: given an nn-vertex graph GG, the goal is to find a drawing of GG in the plane with minimum number of edge crossings. This is one of the central problems in topological graph theory, that has been studied extensively over the past three decades. The first non-trivial efficient algorithm for the problem, due to Leighton and Rao, achieved an O(nlog4n)O(n\log^4n)-approximation for bounded degree graphs. This algorithm has since been improved by poly-logarithmic factors, with the best current approximation ratio standing on O(n \poly(d) \log^{3/2}n) for graphs with maximum degree dd. In contrast, only APX-hardness is known on the negative side. In this paper we present an efficient randomized algorithm to find a drawing of any nn-vertex graph GG in the plane with O(OPT^{10}\cdot \poly(d \log n)) crossings, where OPTOPT is the number of crossings in the optimal solution, and dd is the maximum vertex degree in GG. This result implies an \tilde{O}(n^{9/10} \poly(d))-approximation for Minimum Crossing Number, thus breaking the long-standing O~(n)\tilde{O}(n)-approximation barrier for bounded-degree graphs

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    On Graph Crossing Number and Edge Planarization

    No full text
    Given an n-vertex graph G, a drawing of G in the plane is a mapping of its vertices into points of the plane, and its edges into continuous curves, connecting the images of their endpoints. A crossing in such a drawing is a point where two such curves intersect. In the Minimum Crossing Number problem, the goal is to find a drawing of G with minimum number of crossings. The value of the optimal solution, denoted by OPT, is called the graph’s crossing number. This is a very basic problem in topological graph theory, that has received a significant amount of attention, but is still poorly understood algorithmically. The best currently known efficient algorithm produces drawings with O(log 2 n)· (n + OPT) crossings on bounded-degree graphs, while only a constant factor hardness of approximation is known. A closely related problem is Minimum Planarization, in which the goal is to remove a minimum-cardinality subset of edges from G, such that the remaining graph is planar. Our main technical result establishes the following connection between the two problems: if we are given a solution of cost k to the Minimum Planarization problem on graph G, then we can efficiently find a drawing of G with at most poly(d) · k · (k + OPT) crossings, where d is the maximum degree in G. This result implies an O(n · poly(d) · log 3/2 n)approximation for Minimum Crossing Number, as well as improved algorithms for special cases of the problem, such as, for example, k-apex and bounded-genus graphs.
    corecore