24,545 research outputs found

    On Generalized Records and Spatial Conjunction in Role Logic

    Full text link
    We have previously introduced role logic as a notation for describing properties of relational structures in shape analysis, databases and knowledge bases. A natural fragment of role logic corresponds to two-variable logic with counting and is therefore decidable. We show how to use role logic to describe open and closed records, as well the dual of records, inverse records. We observe that the spatial conjunction operation of separation logic naturally models record concatenation. Moreover, we show how to eliminate the spatial conjunction of formulas of quantifier depth one in first-order logic with counting. As a result, allowing spatial conjunction of formulas of quantifier depth one preserves the decidability of two-variable logic with counting. This result applies to two-variable role logic fragment as well. The resulting logic smoothly integrates type system and predicate calculus notation and can be viewed as a natural generalization of the notation for constraints arising in role analysis and similar shape analysis approaches.Comment: 30 pages. A version appears in SAS 200

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    A Logic of Reachable Patterns in Linked Data-Structures

    Get PDF
    We define a new decidable logic for expressing and checking invariants of programs that manipulate dynamically-allocated objects via pointers and destructive pointer updates. The main feature of this logic is the ability to limit the neighborhood of a node that is reachable via a regular expression from a designated node. The logic is closed under boolean operations (entailment, negation) and has a finite model property. The key technical result is the proof of decidability. We show how to express precondition, postconditions, and loop invariants for some interesting programs. It is also possible to express properties such as disjointness of data-structures, and low-level heap mutations. Moreover, our logic can express properties of arbitrary data-structures and of an arbitrary number of pointer fields. The latter provides a way to naturally specify postconditions that relate the fields on entry to a procedure to the fields on exit. Therefore, it is possible to use the logic to automatically prove partial correctness of programs performing low-level heap mutations

    The First-Order Theory of Sets with Cardinality Constraints is Decidable

    Full text link
    We show that the decidability of the first-order theory of the language that combines Boolean algebras of sets of uninterpreted elements with Presburger arithmetic operations. We thereby disprove a recent conjecture that this theory is undecidable. Our language allows relating the cardinalities of sets to the values of integer variables, and can distinguish finite and infinite sets. We use quantifier elimination to show the decidability and obtain an elementary upper bound on the complexity. Precise program analyses can use our decidability result to verify representation invariants of data structures that use an integer field to represent the number of stored elements.Comment: 18 page

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing
    • …
    corecore