36,226 research outputs found

    Generalized Communicating P Systems Working in Fair Sequential Model

    Get PDF
    In this article we consider a new derivation mode for generalized communicating P systems (GCPS) corresponding to the functioning of population protocols (PP) and based on the sequential derivation mode and a fairness condition. We show that PP can be seen as a particular variant of GCPS. We also consider a particular stochastic evolution satisfying the fairness condition and obtain that it corresponds to the run of a Gillespie's SSA. This permits to further describe the dynamics of GCPS by a system of ODEs when the population size goes to the infinity.Comment: Presented at MeCBIC 201

    Performance of Fractionally Spread Multicarrier CDMA in AWGN as Well as Slow and Fast Nakagami-m Fading Channels

    No full text
    Abstract—In multicarrier code-division multiple-access (MCCDMA), the total system bandwidth is divided into a number of subbands, where each subband may use direct-sequence (DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, we divide the symbol duration into a number of fractional subsymbol durations also referred to here as fractions, in a manner analogous to subbands in MC-CDMA systems. In the proposed MC-CDMA scheme, the data streams are spread at both the symbol-fraction level and at the chip level by the transmitter, and hence the proposed scheme is referred to as the fractionally spread MC-CDMA arrangement, or FS MCCDMA. Furthermore, the FS MC-CDMA signal is additionally spread in the frequency (F)-domain using a spreading code with the aid of a number of subcarriers. In comparison to conventional MC-CDMA schemes, which are suitable for communications over frequency-selective fading channels, our study demonstrates that the proposed FS MC-CDMA is capable of efficiently exploiting both the frequency-selective and the time-selective characteristics of wireless channels. Index Terms—Broadband communications, code-division multiple access (CDMA), fractionally spreading, frequency-domain spreading, multicarrier modulation, Nakagami fading, timedomain spreading

    Multi-Head Finite Automata: Characterizations, Concepts and Open Problems

    Full text link
    Multi-head finite automata were introduced in (Rabin, 1964) and (Rosenberg, 1966). Since that time, a vast literature on computational and descriptional complexity issues on multi-head finite automata documenting the importance of these devices has been developed. Although multi-head finite automata are a simple concept, their computational behavior can be already very complex and leads to undecidable or even non-semi-decidable problems on these devices such as, for example, emptiness, finiteness, universality, equivalence, etc. These strong negative results trigger the study of subclasses and alternative characterizations of multi-head finite automata for a better understanding of the nature of non-recursive trade-offs and, thus, the borderline between decidable and undecidable problems. In the present paper, we tour a fragment of this literature

    SERKET: An Architecture for Connecting Stochastic Models to Realize a Large-Scale Cognitive Model

    Full text link
    To realize human-like robot intelligence, a large-scale cognitive architecture is required for robots to understand the environment through a variety of sensors with which they are equipped. In this paper, we propose a novel framework named Serket that enables the construction of a large-scale generative model and its inference easily by connecting sub-modules to allow the robots to acquire various capabilities through interaction with their environments and others. We consider that large-scale cognitive models can be constructed by connecting smaller fundamental models hierarchically while maintaining their programmatic independence. Moreover, connected modules are dependent on each other, and parameters are required to be optimized as a whole. Conventionally, the equations for parameter estimation have to be derived and implemented depending on the models. However, it becomes harder to derive and implement those of a larger scale model. To solve these problems, in this paper, we propose a method for parameter estimation by communicating the minimal parameters between various modules while maintaining their programmatic independence. Therefore, Serket makes it easy to construct large-scale models and estimate their parameters via the connection of modules. Experimental results demonstrated that the model can be constructed by connecting modules, the parameters can be optimized as a whole, and they are comparable with the original models that we have proposed

    Time-Hopping Multicarrier Code-Division Multiple-Access

    No full text
    A time-hopping multicarrier code-division multiple-access (TH/MC-CDMA) scheme is proposed and investigated. In the proposed TH/MC-CDMA each information symbol is transmitted by a number of time-domain pulses with each time-domain pulse modulating a subcarrier. The transmitted information at the receiver is extracted from one of the, say MM, possible time-slot positions, i.e., assuming that MM-ary pulse position modulation is employed. Specifically, in this contribution we concentrate on the scenarios such as system design, power spectral density (PSD) and single-user based signal detection. The error performance of the TH/MC-CDMA system is investigated, when each subcarrier signal experiences flat Nakagami-mm fading in addition to additive white Gaussian noise (AWGN). According to our analysis and results, it can be shown that the TH/MC-CDMA signal is capable of providing a near ideal PSD, which is flat over the system bandwidth available, while decreases rapidly beyond that bandwidth. Explicitly, signals having this type of PSD is beneficial to both broadband and ultra-wide bandwidth (UWB) communications. Furthermore, our results show that, when optimum user address codes are employed, the single-user detector considered is near-far resistant, provided that the number of users supported by the system is lower than the number of subcarriers used for conveying an information symbol

    Chaotic communications over radio channels

    Get PDF

    Generalised MBER-based vector precoding design for multiuser transmission

    No full text
    We propose a generalized vector precoding (VP) design based on the minimum bit error rate (MBER) criterion for multiuser transmission in the downlink of a multiuser system, where the base station (BS) equipped with multiple transmitting antennas communicates with single-receiving-antenna mobile station (MS) receivers each having a modulo device. Given the knowledge of the channel state information and the current information symbol vector to be transmitted, our scheme directly generates the effective symbol vector based on the MBER criterion using the particle swarm optimization (PSO) algorithm. The proposed PSO-aided generalized MBER VP scheme is shown to outperform the powerful minimum mean-square-error (MMSE) VP and improved MMSE-VP benchmarks, particularly for rank-deficient systems, where the number of BS transmitting antennas is lower than the number of MSs supported

    Performance Analysis of Multihop Wireless Links over Generalized-K Fading Channels

    No full text
    The performance of multihop links is studied in this contribution by both analysis and simulations, when communicating over Generalized-KK (KGK_G) fading channels. The performance metrics considered include symbol error rate (SER), outage probability, level crossing rate (LCR) and average outage duration (AOD). First, the expressions for both the SER and outage probability are derived by approximating the probability density function (PDF) of the end-to-end signal-to-noise ratio (SNR) using an equivalent end-to-end PDF. We show that this equivalent end-to-end PDF is accurate for analyzing the outage probability. Then, the second-order statistics of LCR and AOD of multihop links are analyzed. Finally, the performance of multihop links is investigated either by simulations or by evaluation of the expressions derived. Our performance results show that the analytical expressions obtained can be well justified by the simulation results. The studies show that the KGK_G channel model as well as the expressions derived in this paper are highly efficient for predicting the performance metrics and statistics for design of multihop communication links

    Mellin Transform Based Performance Analysis of Fast Frequency Hopping Using Product Combining

    No full text
    Abstract—In this contribution, we analyze the bit error rate (BER) performance of fast frequency hopping (FFH) assisted M-ary frequency shift keying (MFSK) using product combining. Product combining constitutes an efficient yet low-complexity scheme that may be employed in FFH-MFSK receiver to combat the detrimental effects of interference or jamming. We propose a novel approach to the analysis of this receiver system, which is based on the Mellin transform. Using this approach, the probability density function (PDF) of the product combiner output is expressed in a closed form. Based on the resultant PDF, the BER of the FFH-MFSK product combining receiver operating in Rayleigh fading channel is evaluated analytically. It is shown that the Mellin transform simplifies the analysis of the product combining receiver
    corecore