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Generalized Communicating P Systems
Working in Fair Sequential Mode

Antoine SPICHER1, Sergey VERLAN1

Abstract

In this article we consider a new derivation mode for generalized
communicating P systems (GCPS) corresponding to the functioning of
population protocols (PP) and based on the sequential derivation mode
and a fairness condition that permits to ensure a particular sequence of
configurations. We show that PP can be seen as a particular variant of
GCPS. We also consider several stochastic evolutions satisfying different
fairness conditions and particularly focus on those corresponding to the
run of a Gillespie’s SSA. This permits to further describe the dynamics
of GCPS by a system of ODEs when the population size goes to the
infinity.

Keywords: Population protocols, P systems, Stochastic simulation,
Gillespie’s algorithm.

1 Introduction

The notion of a generalized communicating P system was introduced in
[25], with the aim of providing a common generalization of various purely
communicating models in the framework of P systems.

A generalized communicating P system, or a GCPS for short, corre-
sponds to a hypergraph where each node is represented by a cell and each
edge is represented by a rule. Every cell contains a multiset of objects which
– by communication rules – may move between the cells. The form of a
communication rule is (a, i)(b, j)→ (a, k)(b, l) where a and b are objects
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and i, j, k, l are labels identifying the input and the output cells. Such a
rule means that an object a from cell i and an object b from cell j move
synchronously to cell k and cell l, respectively. In this respect, the model
resembles the Petri Net formalism [20] where tokens from various input
places come along together to fire a given transition and then fork out to
destination places, see [25, 5] for more details.

Depending on the form of the communication rules, several restrictions
on communication rules can be introduced. Due to the simplicity of their
rules, the generative power of such restricted systems is of particular interest
and it has been studied in detail. In [25, 10, 9, 19] it was proved that eight of
the possible nine restricted variants (modulo symmetry) are able to generate
any recursively enumerable set of numbers; in the ninth case only finite
sets of singletons can be obtained. Furthermore, these systems are able to
achieve this generative power even with relatively small numbers of cells and
simple underlying (hypergraph) architectures. In [9] a further restriction is
introduced by considering that the alphabet of objects is a singleton (like in
Petri Nets) and it is shown that computational completeness can be achieved
in four of the restricted variants.

Population protocols (PP) have been introduced in [1] (see [3] for a
survey) as a model of sensor networks consisting of very limited mobile agents
with no control over their own movement. A population protocol corresponds
to a collection of anonymous agents, modeled by finite automata, that interact
with one another to carry out computations, by updating their states, using
some rules. Their computational power has been investigated under several
hypotheses, in most of the cases restricted to finite size populations. In
particular, predicates stably computable in the original model have been
characterized as those definable in Presburger arithmetic. The article [6]
studies the convergence of PP when the population size goes to the infinity.

The evolution of a PP follows a particular fairness condition: an exe-
cution is fair if for all configurations C that appear infinitely often in the
execution, if C is predecessor of a configuration C ′, then C ′ appears infinitely
often in the execution. We observe that the fairness condition is used to
select particular evolutions among all possible runs. In a more general case,
the fairness was investigated in the area of transition systems and there are
several possible definitions that can be used to yield the desired behavior [7].
We consider such conditions in the case of GCPS systems and obtain a new
derivation mode which we call fair sequential mode (fs-mode). We further
study the dynamic behavior of the system in this mode. There are several
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possible evolution strategies implementing different fairness conditions and
we are particularly interested in the stochastic ones. We focus on the strategy
corresponding to a run of the Gillespie stochastic simulation algorithm (SSA).
Using the correspondence between SSA and ODEs (assuming mass-action
kinetics) we show that the dynamics of the system can be represented by
a system of ODEs when the population size goes to the infinity. We also
consider the converse problem and we give sufficient conditions for a system
of ODEs to be represented by a GCPS system working in concentration-
depended stochastic implementation of the fs-mode. We consider several
examples of GCPS simulating Lotka-Volterra (predator-prey) behavior or
computing approximations of algebraic numbers.

We remark that this paper is an extended version of [24].

2 Background

In this section we recall some basic notions and notations used in membrane
computing, formal language theory and computability theory. For further
details and information the reader is referred to [18, 19, 21].

An alphabet is a finite non-empty set of symbols. For an alphabet V ,
we denote by V ∗ the set of all strings over V , including the empty string, λ.
The length of the string x ∈ V ∗ is the number of symbols which appear in x
and it is denoted by |x|. The number of occurrences of a symbol a ∈ V in
x ∈ V ∗ is denoted by |x|a. If x ∈ V ∗ and U ⊆ V , then we denote by |x|U
the number of occurrences of symbols from U in x.

A finite multiset over V is a mapping M : V −→ N; M(a) is said to be
the multiplicity of a in M (N denotes the set of non-negative integers.) A
finite multiset M over an alphabet V can be represented by all permutations

of a string x = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where aj ∈ V , 1 ≤ j ≤ n; x

represents M in V ∗. If no confusion arises, we also may use the customary set
notation for denoting multisets. The size of a finite multiset M, represented
by x ∈ V ∗ is defined as Σa∈V |x|a. The difference and the sum of two
multisets m1 and m2 are denoted as m1 −m2 and m1 +m2 respectively.

2.1 Population Protocols

A population protocol is the quintuple P = (Q,Σ, ı, ω, δ), where Q and Σ are
alphabets (elements of Q are called states and those of Σ input symbols),
ı : Σ → Q is the initial state mapping, ω : Q → {0, 1} is the individual
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output function and δ ⊆ Q4 is a total transition function. Function δ can
be described by using the notation q1q2 → q′1q

′
2, for (q1, q2, q

′
1, q
′
2) ∈ δ. By

convention we consider that q1q2 → q1q2 when no rule involving q1q2 in the
left hand side is present.

The computation of a population protocol on the input multiset w ∈ Σ∗

is performed by n agents (n = |w|), each of them having a state that is
an element of Q. Two agents being in states q1 and q2, respectively, may
interact by the rule q1q2 → q′1q

′
2 from δ. As a result of such an interaction

the states of the agents change to q′1 and q′2 respectively.
More formally, a configuration of a PP is a multiset C over Q. A

transition between two configurations C and C ′, written as C ⇒ C ′, is
obtained by a single interaction between the agents, i.e., C ⇒ C ′ if C ′ =
C − {q1, q2}+ {q′1, q′2} for some q1, q2 ∈ C and q1q2 → q′1q

′
2 ∈ δ. We remark

that the transition does not change the size of the configuration.
An execution of the population protocol on the input multiset w is

defined as an infinite sequence of configurations C0, C1, C2, . . . obtained by
a sequence of transitions Ci ⇒ Ci+1 for all i ≥ 0, starting from the initial
configuration C0 = ı(w).

An execution is fair if for all configurations C that appear infinitely
often in the execution, if C ⇒ C ′ for some configuration C ′, then C ′ appears
infinitely often in the execution.

The output value of configuration C, denoted by ω(C), is defined as
follows:

ω(C) =


0, if ω(q) = 0, for all q ∈ C,
1, if ω(q) = 1, for all q ∈ C,
undefined, otherwise.

Let p be a predicate over multisets of elements of Σ. Predicate p can
be considered as a function whose range is {0, 1} and whose domain is the
collection of these multisets. The predicate p is said to be computed by a
PP P as defined above if for any input multiset w and every fair execution
of P on the input w, there exists a number k ∈ N such that ω(Ck′) = p(w)
for all k′ > k.

The following result was proved in [1, 2]:

Theorem 1 A predicate is computable in the population protocol model iff
it is semilinear.

Recall that semilinear sets are known to correspond to predicates on
counts of input agents definable in first-order Presburger arithmetic [17].
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2.2 Generalized Communicating P Systems

Next we recall the basic definitions concerning generalized communicating P
systems [25].

Definition 1 A generalized communicating P system (a GCPS) of degree
n, where n ≥ 1, is an (n+ 4)-tuple Π = (O,E,w1, . . . , wn, R, h) where

1. O is an alphabet, called the set of objects of Π;

2. E ⊆ O; called the set of environmental objects of Π;

3. wi ∈ O∗, 1 ≤ i ≤ n, is the multiset of objects initially associated with
cell i;

4. R is a finite set of interaction rules (or communication rules) of the
form (a, i)(b, j)→ (a, k)(b, l), where a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if
i = 0 and j = 0, then {a, b} ∩ (O \ E) 6= ∅; i.e., a /∈ E and/or b /∈ E;

5. h ∈ {1, . . . , n} is the output cell.

The system consists of n cells, labeled by natural numbers from 1 to n,
which contain multisets of objects over O; initially cell i contains multiset
wi (the initial contents of cell i is wi). We distinguish an additional special
cell, labeled by 0, called the environment. The environment contains objects
of E in an infinite number of copies.

The cells interact by means of the rules (a, i)(b, j)→ (a, k)(b, l), with
a, b ∈ O and 0 ≤ i, j, k, l ≤ n. As the result of the application of the rule,
object a moves from cell i to cell k and b moves from cell j to cell l. If two
objects from the environment move to some other cell or cells, then at least
one of them must not appear in the environment in an infinite number of
copies. Otherwise, an infinite number of objects can be imported in the
system in one step.

A configuration of a GCPS Π, as above, is an (n+1)-tuple (z0, z1, . . . , zn)
with z0 ∈ (O \ E)∗ and zi ∈ O∗, for all 1 ≤ i ≤ n; z0 is the multiset of
objects present in the environment in a finite number of copies, whereas, for
all 1 ≤ i ≤ n, zi is the multiset of objects present inside cell i. The initial
configuration of Π is the tuple (λ,w1, . . . , wn).

Given a multiset of rulesR overR and a configuration C = (z0, z1, . . . , zn)
of Π, we say that R is applicable to C if all its elements can be applied si-
multaneously to the objects of multisets z0, z1, . . . , zn such that every object
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is used by at most one rule. Then, for a configuration C = (z0, z1, . . . , zn)
of Π, a new configuration C ′ = (z′0, z

′
1, . . . , z

′
n) is obtained by applying the

rules of R in a non-deterministic maximally parallel manner: taking an
applicable multiset of rules R over R such that the application of R results
in configuration C ′ = (z′0, z

′
1, . . . , z

′
n) and there is no other applicable multiset

of rules R′ over R which properly contains R.

It is also possible to replace the maximally parallel strategy of rule
application by other strategies, called derivation modes (in the context of
the present paper, the terms mode and strategy are used indifferently). A
derivation mode lies in the heart of the semantics of P systems and it permits
to specify which multiset among different possible applicable multisets of
rules can be applied. When P systems were introduced, only the maximally
parallel derivation mode was considered which states that corresponding
multisets should be maximal, i.e., non-extensible. With the appearance of
the minimal parallel derivation mode [8] the concept of the derivation mode
had to be precisely defined and [12] presents a framework that permits to
easily define different derivation modes.

One application of a multiset of rules satisfying the conditions of a
derivation mode represents a transition in Π from configuration C to con-
figuration C ′. A transition sequence is said to be a successful generation
by Π if it starts with the initial configuration of Π and ends with a halting
configuration in which a halting condition is satisfied. Generally, the total
halting condition is considered, being true for a configuration where no
further transition step can be performed.

We say that Π generates a non-negative integer n if there is a successful
generation by Π such that n is the size of the multiset of objects present
inside the output cell in the halting configuration. The set of non-negative
integers generated by a GCPS Π in this way is denoted by N(Π). It is also
possible to use GCPS as acceptors, in this case an input multiset is accepted
if the system halts on it.

In [25] it is shown that GCPS are able to generate all recursively
enumerable languages. Moreover this result can be obtained by using various
restrictions on the type of rules (i.e. induced hypergraph structures), on
the number of membranes and on the cardinality of the alphabet. We refer
to [25, 10, 9] for more details.

If the cardinality of the alphabet O is equal to one, then we refer to
the corresponding symbol as a token (denoted by •). Hence, we assume that
O = {•}. We observe that such systems are similar to Petri Nets having a
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restricted topology. This is especially visible if a graphical notation is used.
However, the maximal parallelism and the concept of the environment are
specific to P systems, so we place this study in the latter framework. A
converse study of P systems from the point of view of Petri Nets can be
found in [13]. For more details on Petri Nets and membrane computing we
also refer to [19].

In this article we shall consider the dynamics of the configuration of
GCPS, so we are no more interested in computation (and halting evolutions).

3 Fair Sequential Derivation Mode

In this section we are interested in the relation between PP and GCPS. We
show that in terms of structure PP and GCPS are quite similar, the main
differences concern the environment and the derivation mode. We define
a new fair sequential mode (fs-mode) for GCPS and hence we are able to
encode any PP in a GCPS w.r.t. their dynamics. In some conditions, an
equivalence between the two models can be stated.

We consider several fairness conditions for GCPS and their implemen-
tations with stochastic and Gillespie-like strategies.

3.1 GCPS in Fair Sequential Mode

For GCPS, mainly the maximally parallel derivation mode is investigated
with several attempts to investigate asynchronous or minimally parallel
derivation mode, see [19] for more details. The derivation mode of PP is
very particular – it corresponds to a sequential strategy where only one rule
is applied at each step, like in Petri Nets, but with an additional fairness
condition corresponding to the definition 3 below. We can consider such a
strategy in GCPS case as well.

The notion of fairness was originally developed in the context of transi-
tion systems to select a particular subset of all the possible executions of
a system. There exist many ways of defining fairness conditions. We give
below three different fairness conditions widely found in the literature [7].

Definition 2 A sequence of transitions C0 ⇒ C1 ⇒ . . . is strong locally fair
(SLF) iff for every rule r, if r is applicable in infinitely many configurations
Ci, then there are infinitely many j such that one passes from Cj to Cj+1

(Cj ⇒ Cj+1) by applying rule r.
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Definition 3 A sequence of transitions C0 ⇒ C1 ⇒ . . . is strong globally
fair (SGF) iff for every C and C ′ such that C ⇒ C ′, if C = Ci for infinitely
many i, then Cj = C ′ for infinitely many j.

Definition 4 A sequence of transitions C0 ⇒ C1 ⇒ . . . is weakly fair (WF)
iff for every rule r, if it exists j such that r is applicable in configuration
Ci for all i ≥ j, then for infinitely many k one passes from Ck to Ck+1

(Ck ⇒ Ck+1) by applying rule r.

When assuming that the number of configurations is finite (this is the
case for classical PP for example), the definition 3 can be easily rephrased
as follows: a computation C0 ⇒ C1 ⇒ . . . is fair if

• there exists a non-negative integer N such that configuration CN
belongs to a terminal strongly connected component of the state
graph1; and

• any state of this terminal strongly connected component appears
infinitely often in the execution.

In the context of this paper, we are interested in the study of the
behavior of GCPS in sequential mode with some fairness condition: we
say that a GCPS Π evolve in a fair sequential derivation mode (fs-mode)
w.r.t. to the fairness condition F if the sequence of transitions between
configurations of Π fulfills the fairness condition F .

Encoding PP in GCPS. It can be easily seen that both PP and GCPS
are particular instances of multiset rewriting. Indeed, in both cases the
underlying data structure is multiset (obtained in a direct way for PP and
by attaching the indices of membranes to the objects in GCPS) and the
evolution rules clearly correspond to multiset rewriting rules with both left
hand and right hand sides of size two. So, the translation of a PP to a one-
symbol GCPS can be easily done as follows. Given a PP P with set of states
Q (for convenience we suppose that Q = {1, . . . , n}) and transition relation δ
in an initial configuration C0, let define GCPS ΠP = (O,E,w1, . . . , wn, R, 1)
as follows

• O = E = {•},
1In this directed graph, nodes correspond to the configurations C, and two nodes C

and C′ are directly linked if C ⇒ C′.
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• wq = •k, k = |C0|q for any q ∈ Q,

• R = {(•, q1)(•, q2)→ (•, q′1)(•, q′2) | q1q2 → q′1q
′
2 ∈ δ}.

The above system encodes each state q of P by a token • present in membrane
labeled by q. It is easy to see that there is a one-to-one correspondence
between the sequences of transitions of P and of ΠP .

Conversely, given a GCPS Π with an empty environmental set (i.e., E =
∅) and with a deterministic rule set R (eventually extended to a total function
with the identity), it is possible to define PP PΠ with Q = O × {1, . . . , n}
and δ = R, i.e., each couple (object, cell) corresponds to a state in PΠ. The
initial configuration C0 ∈ Q∗ of PΠ is given such that |C0|(o,i) = |wi|o, for
all (o, i) ∈ Q.

Such an encoding works only if the set E is empty, otherwise it is not
possible to represent an infinite multiset (corresponding to the environment)
using PP.

From these considerations, it is trivial to establish that PP ≡ GCPS
in fs-mode with respect to SGF when E = ∅ and R is deterministic.

If we consider an encoding function ı as defined for PP and the halting
condition corresponding to the stabilization of the ω-image of the configura-
tion, then as an immediate consequence of [1, 2], we obtain that any GCPS
working in fs-mode with respect to SGF and that has a deterministic rule
set not involving the environment can only accept semilinear sets.

Conversely, we also obtain that any PP working in maximally parallel
mode (i.e., a maximally parallel number of interactions can happen at each
step) is computationally complete if the number agents in some particular
state q0 is unbounded (going to the infinity).

3.2 Simulation of GCPS in FS-Mode

When simulating a transition system the notion of fairness should be replaced
by a local strategy that guarantees the validity of the condition.

Simulating a GCPS in fs-mode consists in defining an algorithm, called a
scheduler, that decides at each time step which applicable rule of the current
state has to be applied. A scheduler can be seen as a local strategy that
guarantees the validity of the fairness condition during the whole execution.
It is characterized by the subset of sequences of transitions it can generate
and then by the fairness condition it respects.

Among all possible implementations of schedulers, Markovian processes
feature prominently since they do not require any history or global knowledge
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on the state space, and they provide a modeling tool useful in many domains
(like in the simulation of population behaviors or in distributed algorithmics).
Such a Markovian process corresponds to a labeling of the state graph arrows
C ⇒pr(C) C ′ by a static probability pr(C) that only depends on configuration
C and on the applied rule r = (•, q1)(•, q2)→ (•, q′1)(•, q′2) (without loss of
generality we can focus on one token GCPS). We give here two examples of
Markovian processes:

1. Equiprobable implementation: C ⇒1/kC C ′ where kC denotes the car-
dinality of the set {C ′ |C ⇒ C ′}.

2. Concentration-dependent implementation: C ⇒pr(C) C ′ where pr(C) is
proportional to hr(C), the number of distinct combinations of tokens
in C that activate r and to a stochastic constant cr that only depends
on r. The number hr(C) is given by

hr(C) =


|C|q1 |C|q2 if q1 6= 0, q2 6= 0, q1 6= q2

|C|q1(|C|q1 − 1) if q1 6= 0, q1 = q2

|C|q1 if q2 = 0
|C|q2 if q1 = 0

(1)

The two last cases hold when the environment (containing an infinite
number of tokens) is involved in the rule.

It is possible to give sufficient conditions for a Markov process to
generate fair sequences of transitions with probability 1 with respect to some
fairness condition. For example, Theorem (1) from [4] establishes that any
bounded fair transition system, that is a transition system where there exists
a real number c with 0 < c < 1 such that pr ≥ c for all transitions C ⇒pr C ′,
generates fair sequences of transitions with probability 1 w.r.t. SLF. This
result can be straightforwardly applied for the equiprobable implementation:
since any GCPS has sets of rules R of finite size, we have 1/kC ≥ 1/|R| for
any configuration C. Therefore, the equiprobable implementation generates
fair sequences of transitions with probability 1 w.r.t. SLF.

To our knowledge, there is no such general result applicable for the
concentration-dependent implementation. Nevertheless, for the class of
GCPS equivalent to PP (see Section 3.1), a random pairing scheduler (con-
sisting in choosing an ordered pair of agents at random, independently and
uniformly from all pairs) generates fair sequences of transitions with proba-
bility 1 for SGF [1]. The proof of this result relies on the fact that a PP has a



Generalized Communicating P Systems in Fair Sequential Mode 237

finite state graph and that the associated Markov chain leaves non-terminal
strongly connected components and visits infinitely often all states of one of
the terminal strongly connected components with probability 1. Following
the same reasoning, this result also holds for any concentration-dependent
scheduler on GCPS with an empty environment. In fact, the usual PP
random pairing scheduler is a particular concentration-dependent scheduler
where pr(C) = hr(C)∑

s∈R hs(C) .

3.3 Gillespie’s SSA

A usual abstraction in the simulation of biochemical systems consists in
considering the system (e.g., a bacterium) as a homogeneous chemical solution
where the reactions of the model are taking place. D.T. Gillespie has proposed
in [14] a stochastic simulation algorithm (SSA) for producing the trajectories
of such a chemical system by computing the next reaction and the elapsed
time since last reaction occurred. In the following, we show that Gillpesie’s
SSA provides a concentration-dependent scheduler where the transition
probabilities depend on a stochastic coefficient associated with each rule.

Specification of the SSA. Let µ be a chemical reaction. The probability
that µ takes place during an infinitesimal time step is proportional to:

• cµ, the stochastic reaction constant2 of reaction µ;

• hµ(S), the number of distinct molecular combinations that can activate
reaction µ; it depends on the current chemical state S;

• dτ , the length of the time interval.

Gillespie proved that the probability P (τ, µ|S)dτ that, being in a chemical
state S, the next reaction will be of type µ and will occur in the time interval
(t+ τ, t+ τ + dτ) is:

P (τ, µ|S)dτ = aµ(S) e−a(S) τdτ

The function aµ(S) = cµ hµ(S) is called the propensity of reaction µ, and
a(S) =

∑
ν aν(S) is the combined propensity of all reactions.

This probability leads to the first straightforward Gillespie’s exact
stochastic simulation algorithm called the first reaction method. From a

2Evaluating the stochastic constants is one of the key issues in stochastic simulations
of biochemical reactions.
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chemical state S, it consists in choosing an elapsed time τ for each reaction µ
according to the probability P (τ, µ|S). The reaction with the lowest elapsed
time is selected and applied on the system making its state evolve. A new
probability distribution is then computed for this new state and the process
is iterated.

Gillespie’s Simulation of a GCPS. Gillespie’s SSA can be used in
wider range of contexts than only (bio)chemical modeling. Applied to a
GCPS Π, SSA gives a way to simulate a continuous-time Markov chain with
the states corresponding to the configurations of Π and with transitions
between states corresponding to a single application of a rule of Π. From this
point of view, the definition of a GCPS is extended to associate with each
rule r : (a, i)(b, j)→cr (a, l)(b, k) a stochastic coefficient cr (i.e., a positive
real number) that characterizes the kinetics of the rule in the Markov
chain. The probability for a transition between two configurations C and C ′

corresponding to the application of a rule r with stochastic coefficient cr is
given by

pr(C) =
ar(C)

a(C)
=
crhr(C)

a(C)

that directly corresponds to the definition of a concentration-dependent
scheduler.

As an immediate consequence, Gillespie’s algorithm generates fair ex-
ecutions of PP w.r.t. SGF; in other words, it allows the computation of
semilinear predicates with probability 1.

The use of Gillespie’s SSA allows us to deal with interesting population
behaviors in GCPS. It is illustrated in the two next sections where the
Gillespie’s simulation of GCPS is used to characterized population dynamics.

4 Application to the Lotka-Volterra Model

A paradigmatic example illustrating how GCPS allows a well suited specifica-
tion of population behaviors consists of the description of a process inspired
by the Lotka-Volterra model.

4.1 The Lotka-Volterra Model

The Lotka-Volterra process was introduced by Lotka as a model of coupled
auto-catalytic chemical reactions, and was investigated by Volterra as a
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model for studying an ecosystem of predators and preys [11]. This model
specifies how two coupled populations (of chemicals or individuals) Y1 (the
preys) and Y2 (the predators) behave. It may be presented using the following
ODEs

dY1

dt
= (c1 − c2Y2)Y1

dY2

dt
= (c2Y1 − c3)Y2 (2)

In [14], D.T. Gillespie proposes the study of this model from a discrete and
stochastic point view based on the system of chemical reactions

Y1

c1
GGGGGGA 2Y1 Y1 + Y2

c2
GGGGGGA 2Y2 Y2

c3
GGGGGGA . (3)

The dynamics of these reactions is conveniently characterized using the
predator-prey interpretation. The first rule states that a prey Y1 reproduces.
The second rule states that a predator Y2 reproduces after feeding on prey
Y1. Finally, the last rule specifies that predators Y2 die of natural causes.
Coefficients ci are the rates of the three reactions. The correspondence
between the two models relies on the fact that the trajectories of Gillespie’s
SSA tend to the solutions of the ODEs system given by the law of mass
action on the reactions when the number of chemicals tends to the infinity
(see Section 5). This result is due to the particular application of Kurtz’s
theorem [15] to chemical systems.

4.2 Lotka-Volterra GCPS Definition

The model above does not fulfill the GCPS requirements since the first
and last reactions are not pairwise interactions. We propose to extend
reactions (3) by considering a renewable resource X for Y1 as a third species3:
the molecular level of X remains constant whatever its production or its
consumption. The extended system of reactions is:

X + Y1

c′1
GGGGGGA 2Y1 Y1 + Y2

c′2
GGGGGGA 2Y2 Y2 +X

c′3
GGGGGGA 2X (4)

The use of a pairwise interaction in the last reaction can be interpreted as
a competition between the two predator behaviors: a predator in presence
of preys eats and reproduces (second reaction); a predator in absence of
prey (represented by the grass) dies (third reaction). Moreover, with the

3We use the same notation as in [14] to express that the food resource X is assumed
renewable.
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Figure 1: Runs of the Lotka-Volterra model with renewable (left column) and non-
renewable (right column) resources for different initial states (kinetics rates equal 1):
Y1 = 500, Y2 = 1500, X = X = 1000 (first row), Y1 = Y2 = X = X = 1000 (second row),
Y1 = Y2 = 1000, X = X = 10000 (third row), Y1 = 1000, Y2 = 0, X = X = 10000 (fourth
row). The solid red line represents preys, the dashed green line predators, and the dotted
blue line resources. The two first rows show that both dynamics exhibit the same properties
as presented in [14] (particularly, in second row, oscillations araise from an equilibrium
initial state for the ODEs). The third row shows the difference in the dynamics when the
resource size is ten times larger than the population size. The last row shows the difference
in the dynamics when the predator population is empty. The simulations have been done
using the general simulation language MGS (http://mgs.spatial-computing.org) that
allows an easy implementation of all models of the present article [22, 16, 23].
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hypothesis that the number of X remains constant, systems (3) and (4)
have equivalent dynamics in terms of propensity when c1 = Xc′1, c2 = c′2
and c3 = Xc′3: propensity of the first reaction of system (3) is given by
a1 = c1 h1 = c1 Y1 = c′1X Y1, that is the expected propensity of the first
reaction of system (4); second reactions of both systems are the same; a
similar reasoning can be done for the last case.

System (4) is only composed of pairwise interactions that satisfy con-
dition 4 of Definition 1. Thus, it can be easily expressed as a one-symbol
GCPS, denoted ΠLV , with rules R:

(•, 0)(•, 1)→c′1 (•, 1)(•, 1) (•, 1)(•, 0)→c′1 (•, 1)(•, 1)

(•, 1)(•, 2)→c′2 (•, 2)(•, 2) (•, 2)(•, 1)→c′2 (•, 2)(•, 2)

(•, 2)(•, 0)→c′3 (•, 0)(•, 0) (•, 0)(•, 2)→c′3 (•, 0)(•, 0)

where membrane indices 0, 1 and 2 represent the environment (an infinite
source of X), the preys Y1 and the predators Y2, respectively.

Let now consider the previously defined concentration-dependent sched-
uler. A transition C ⇒pµ C ′ has a probability of pµ = aµ/a0 with the
propensity function aµ = cµ hµ: cµ is the rate of the corresponding reaction
in (3) and hµ is given by equation (1) accordingly to ΠLV . The reader is
invited to pay attention that even if the environment is an infinite source
of X (instead of a constant one), the dynamics is well taken into account:
rules involving environmental objects have probabilities that do not depend
on the number of these objects, see equation (1). In this respect, any com-
putation of ΠLV represents a run of the Gillespie’s SSA of reactions (4). As
a consequence, ΠLV is an exact model of the original Lotka-Volterra system.

It has to be remarked that ΠLV cannot be described by any PP since the
environment objects are involved in its definition. A possible specification of
the Lotka-Volterra equations may be obtained within a PP by considering
X as a non-renewable resource. Such a definition has been realized (taking
reactions (4) and substituting X by X.) However, due to the limitation of
resource, this system does not respect the original Lotka-Volterra system dy-
namics anymore. For example, without any predators, a population of preys
stabilizes in this model, while in the original model it grows exponentially.
Figure 1 gives some examples of simulations of the Lotka-Volterra model
considering renewable and non-renewable resources.
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5 GCPS With Infinite Population Size

In this section, we study how the dynamics of GCPS with infinite population
can be described by a system of ODEs.

5.1 GCPS Population Dynamics

As previously said in the presentation of the Lotka-Volterra model, the mass
action law gives a way to associate a system of ODEs with a system of
chemical reactions. It is possible to reverse this method and to give a GCPS
system whose population dynamics (when the population size tends to the
infinity) will correspond to some dynamics given by a system of ODEs.

Let us consider the ODEs system defined on set of variables {Y1, . . . , YN}
of the form

dYi
dt

=
∑
j,k

aijkYjYk −
∑
j

(bij + bji)YiYj (5)

where coefficients aijk and bij satisfy the following conditions:

1. for all i, j, k, aijk ≥ 0 and bij ≥ 0;

2. for all j, k such that bjk 6= 0, there exists either one index i0 such that
ai0jk = 2 bjk, or two distinct indices i1 and i2 such that ai1jk = ai2jk = bjk;

for any other index i, i 6= i0 or (i 6= i1 and i 6= i2), aijk = 0.

The above conditions are sufficient to ensure that
∑

i
dYi
dt = 0. Then there

exists a concentration-dependent implementation of fs-mode GCPS with
respect to the fairness condition SGF and without rules involving the envi-
ronment (i.e., a PP) whose behavior is exactly described by ODEs (5) when
the population size goes to the infinity. Indeed, these equations correspond
to the mass-action law of a set of rules such that for any j, k with bjk 6= 0

(•, j)(•, k)→bjk (•, i0)(•, i0) or (•, j)(•, k)→bjk (•, i1)(•, i2)

according to the considered possibility of the above condition 2. The reader
is invited to pay attention to the fact that these equations correspond to
a wider range of dynamics than the dynamics of second-order chemical
reactions with two products since they allow the specification of ordered
interactions (e.g., involving a sender and a receiver as considered in the PP
literature). This property also holds in PP and suggests that equations (5)
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exactly describe PP dynamics when the size of the populations tends to the
infinity.

It is obvious that a more general class of population behaviors is captured
by concentration-dependent fs-mode GCPS since they do not need to be
conservative thanks to the environment. Following the idea of equivalence
between systems (3) and (4) in terms of dynamics, equations (5) can be
extended with the introduction of a renewable variable Y0.

5.2 Computational Properties

We focus here on the original use of PP as a computational model of
algebraic numbers proposed in [6]. This article investigates the case where
the computation is independent of the initial contents of the system.

Using the GCPS terminology, the main idea of [6] is to consider the
result of a computation as a ratio between the number of tokens in certain
membrane and the total number of tokens (without taking care of the
environment) when the population size goes to the infinity and when the
state of the system converges. The proposed work relies on the definition of
a particular strategy of execution of the PP: a step of execution consists in
sampling uniformly and independently of the past two distinct tokens in the
membrane and let them interact in a sequential mode. The authors of the
aforementioned article studied the Markov chain associated with PP and
proved its equivalence to some system of ODEs at the limit.

We remark that the same kind of result directly arises from considera-
tions of Section 5.1 since this computational model is captured by one-symbol
GCPS working in fs-mode with Gillespie concentration-dependent imple-
mentation. Indeed, the above execution strategy exactly corresponds to a
Gillespie’s SSA run where the stochastic constants equal 1 for all rules. Thus,
the study of the model corresponds to the investigation of the sensibility of
the associated ODEs system. Let us illustrate this point by considering the
running example of [6]

(•, p)(•, p)→ (•, p)(•,m)

(•, p)(•,m)→ (•, p)(•, p)
(•,m)(•, p)→ (•, p)(•, p)

(•,m)(•,m)→ (•, p)(•,m)

where symbols p and m identify two membranes. It has been shown that
the ratio p

p+m , where p (resp. m) is the size of the membrane p (resp. m),
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converges to 1√
2

when the population size goes to infinity. Accordingly to

equations (5), we associate ODEs with this GCPS as follows

dYp
dt

= Y 2
m + 2YpYm − Y 2

p

dYm
dt

= −Y 2
m − 2YpYm + Y 2

p

The stable states of this system are obtained when the two equations vanish,
that is, when either Ym = −(

√
2 + 1)Yp or Ym = (

√
2 − 1)Yp. The first

solution is incoherent since it involves a negative size of population. The
second solution trivially leads to the expected result

Yp
Yp+Ym

= 1√
2
.

Using this method, we found the 17 algebraic numbers computable

with the 81 PP involving only two states: {0, 2−
√

3, 3−
√

5
2 , 1

3 ,
5−
√

17
2 ,
√

2−
1, 1

2 ,
√

17−3
2 , 1√

3
,
√

5−1
2 , 1− 1√

2
, 1− 1√

3
, 2−
√

2, 2
3 ,

1√
2
,
√

3−1, 1}. In the general

case, there are
(
n+1

2

)n2

PP with n states and we do not know how many
algebraic numbers are computable by them. We conjecture that only solutions
of the system of equations dYi

dt = 0 derived from the ODEs system 5 can be
computed.

6 Conclusions

In this article we investigated connections between population protocols
and generalized communicating P systems. The two models share the same
multiset structure and the same type of rules. Traditionally PP are used to
study population dynamics in the context of distributed algorithmics while
GCPS are investigated for computational properties.

By incorporating the derivation mode from PP into GCPS framework
we obtained a strict inclusion of PP in GCPS working in fs-mode. We then
considered different fairness conditions and we concentrated on a particular
implementation of the SGF corresponding to a run of Gillespie’s SSA. As
a result we obtained that the dynamics of such systems can be described
by the corresponding system of differential equations. Different questions
could then be explored, like the investigation of the conditions ensuring that
the system reaches a stable state regardless of its initial state or ensuring
that a stable state is never reached for any initial configuration. GCPS
are in this sense easier to handle than PP because of the environment that
permits to easily simulate the equivalent of creation or degradation reactions.
Section 5.1 also considers the converse problem of the construction of a
GCPS system exhibiting a particular behavior given by a systems of ODEs.
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It would be interesting to see if the given sufficient conditions are also
necessary. A mathematical challenge resulting from Section 5.2 is whether
for any algebraic number x ∈ [0..1] being a root of a system of polynomials
of degree 2 there is a concentration-dependent evolution implementation of
GCPS working in the fs-mode with respect to SGF that converges to x.

We remark that the presented results hold only in the concentration-
dependent scheduler. By taking an equiprobable scheduler the results are
different.

Since Petri Nets can be seen as multiset rewriting, it is clear that the
results of this paper can be translated to this domain (for Petri Nets with
specific types of rules and an additional fairness strategy).

We think that the fs-mode has interesting properties that should be
further explored. The fairness condition can express a local stochastic
evolution, so it could be preferable to consider this condition instead of a
stochastic behavior. Another interesting property of the proposed stochastic
implementation is that Gillespie’s SSA introduces an explicit continuous
time and discrete events in the model, which do not appear in a GCPS
description.
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[9] E. Csuhaj-Varjú, G. Vaszil, and S. Verlan. On generalized communi-
cating P systems with one symbol. In M. Gheorghe, T. Hinze, and
G. Paun, editors, Proceedings of the Eleventh International Conference
on Membrane Computing, 137–154. Verlag ProBusiness Berlin, 2010.
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A. Salomaa, editors, Membrane Computing, 8th International Workshop,
WMC 2007, Thessaloniki, Greece, June 25-28, 2007 Revised Selected
and Invited Papers, volume 4860 of LNCS, 271–284. Springer, 2007.

[13] P. Frisco. Computing with Cells. Oxford University Press, 2009.

[14] D. T. Gillespie. Exact stochastic simulation of coupled chemical reac-
tions. J. Phys. Chem., 81(25):2340–2361, 1977.



Generalized Communicating P Systems in Fair Sequential Mode 247

[15] T.G. Kurtz. The Relationships between Stochastic and Deterministic
Models for Chemical Reactions. Journal of Chemical Physics, 57(7):2976–
2978, 1971.

[16] O. Michel, A. Spicher, and J.-L. Giavitto. Rule-based programming
for integrative biological modeling – application to the modeling of
the lambda phage genetic switch. Natural Computing, 8(4):865–889,
december 2009.

[17] M. Presburger. Uber die vollstandig-keit eines gewissen systems der
arithmetik ganzer zahlen, in welchemdie addition als einzige operation
hervortritt. Comptes rendus du I Congres des Mathematicians des Pays
Slaves, pages 92–101, 1929.
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