8 research outputs found

    Surveys without Questions: A Reinforcement Learning Approach

    Full text link
    The 'old world' instrument, survey, remains a tool of choice for firms to obtain ratings of satisfaction and experience that customers realize while interacting online with firms. While avenues for survey have evolved from emails and links to pop-ups while browsing, the deficiencies persist. These include - reliance on ratings of very few respondents to infer about all customers' online interactions; failing to capture a customer's interactions over time since the rating is a one-time snapshot; and inability to tie back customers' ratings to specific interactions because ratings provided relate to all interactions. To overcome these deficiencies we extract proxy ratings from clickstream data, typically collected for every customer's online interactions, by developing an approach based on Reinforcement Learning (RL). We introduce a new way to interpret values generated by the value function of RL, as proxy ratings. Our approach does not need any survey data for training. Yet, on validation against actual survey data, proxy ratings yield reasonable performance results. Additionally, we offer a new way to draw insights from values of the value function, which allow associating specific interactions to their proxy ratings. We introduce two new metrics to represent ratings - one, customer-level and the other, aggregate-level for click actions across customers. Both are defined around proportion of all pairwise, successive actions that show increase in proxy ratings. This intuitive customer-level metric enables gauging the dynamics of ratings over time and is a better predictor of purchase than customer ratings from survey. The aggregate-level metric allows pinpointing actions that help or hurt experience. In sum, proxy ratings computed unobtrusively from clickstream, for every action, for each customer, and for every session can offer interpretable and more insightful alternative to surveys.Comment: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Learning Retrospective Knowledge with Reverse Reinforcement Learning

    Full text link
    We present a Reverse Reinforcement Learning (Reverse RL) approach for representing retrospective knowledge. General Value Functions (GVFs) have enjoyed great success in representing predictive knowledge, i.e., answering questions about possible future outcomes such as "how much fuel will be consumed in expectation if we drive from A to B?". GVFs, however, cannot answer questions like "how much fuel do we expect a car to have given it is at B at time tt?". To answer this question, we need to know when that car had a full tank and how that car came to B. Since such questions emphasize the influence of possible past events on the present, we refer to their answers as retrospective knowledge. In this paper, we show how to represent retrospective knowledge with Reverse GVFs, which are trained via Reverse RL. We demonstrate empirically the utility of Reverse GVFs in both representation learning and anomaly detection.Comment: NeurIPS 202
    corecore