32,615 research outputs found

    Integrating Symbolic and Neural Processing in a Self-Organizing Architechture for Pattern Recognition and Prediction

    Full text link
    British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225

    Adaptive Resonance Theory: Self-Organizing Networks for Stable Learning, Recognition, and Prediction

    Full text link
    Adaptive Resonance Theory (ART) is a neural theory of human and primate information processing and of adaptive pattern recognition and prediction for technology. Biological applications to attentive learning of visual recognition categories by inferotemporal cortex and hippocampal system, medial temporal amnesia, corticogeniculate synchronization, auditory streaming, speech recognition, and eye movement control are noted. ARTMAP systems for technology integrate neural networks, fuzzy logic, and expert production systems to carry out both unsupervised and supervised learning. Fast and slow learning are both stable response to large non stationary databases. Match tracking search conjointly maximizes learned compression while minimizing predictive error. Spatial and temporal evidence accumulation improve accuracy in 3-D object recognition. Other applications are noted.Office of Naval Research (N00014-95-I-0657, N00014-95-1-0409, N00014-92-J-1309, N00014-92-J4015); National Science Foundation (IRI-94-1659

    Industrial process monitoring by means of recurrent neural networks and Self Organizing Maps

    Get PDF
    Industrial manufacturing plants often suffer from reliability problems during their day-to-day operations which have the potential for causing a great impact on the effectiveness and performance of the overall process and the sub-processes involved. Time-series forecasting of critical industrial signals presents itself as a way to reduce this impact by extracting knowledge regarding the internal dynamics of the process and advice any process deviations before it affects the productive process. In this paper, a novel industrial condition monitoring approach based on the combination of Self Organizing Maps for operating point codification and Recurrent Neural Networks for critical signal modeling is proposed. The combination of both methods presents a strong synergy, the information of the operating condition given by the interpretation of the maps helps the model to improve generalization, one of the drawbacks of recurrent networks, while assuring high accuracy and precision rates. Finally, the complete methodology, in terms of performance and effectiveness is validated experimentally with real data from a copper rod industrial plant.Postprint (published version

    SARDSRN: A NEURAL NETWORK SHIFT-REDUCE PARSER

    Get PDF
    Simple Recurrent Networks (SRNs) have been widely used in natural language tasks. SARDSRN extends the SRN by explicitly representing the input sequence in a SARDNET self-organizing map. The distributed SRN component leads to good generalization and robust cognitive properties, whereas the SARDNET map provides exact representations of the sentence constituents. This combination allows SARDSRN to learn to parse sentences with more complicated structure than can the SRN alone, and suggests that the approach could scale up to realistic natural language

    ARTMAP: Supervised Real-Time Learning and Classification of Nonstationary Data by a Self-Organizing Neural Network

    Full text link
    This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.British Petroleum (98-A-1204); Defense Advanced Research Projects Agency (90-0083, 90-0175, 90-0128); National Science Foundation (IRI-90-00539); Army Research Office (DAAL-03-88-K0088

    Learning, Categorization, Rule Formation, and Prediction by Fuzzy Neural Networks

    Full text link
    National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-91-J-4100, N00014-92-J-4015) Air Force Office of Scientific Research (90-0083, N00014-92-J-4015

    A Neural Network Architecture for Autonomous Learning, Recognition, and Prediction in a Nonstationary World

    Full text link
    In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.Advanced Research Projects Agency (N00014-92-J-4015); British Petroleum (89A-1204); National Science Foundation (IRI-90-J-4015); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225
    corecore