5 research outputs found

    Hierarchical models for service-oriented systems

    Get PDF
    We present our approach to the denotation and representation of hierarchical graphs: a suitable algebra of hierarchical graphs and two domains of interpretations. Each domain of interpretation focuses on a particular perspective of the graph hierarchy: the top view (nested boxes) is based on a notion of embedded graphs while the side view (tree hierarchy) is based on gs-graphs. Our algebra can be understood as a high-level language for describing such graphical models, which are well suited for defining graphical representations of service-oriented systems where nesting (e.g. sessions, transactions, locations) and linking (e.g. shared channels, resources, names) are key aspects

    Knowledge-Based Techniques for Scholarly Data Access: Towards Automatic Curation

    Get PDF
    Accessing up-to-date and quality scientific literature is a critical preliminary step in any research activity. Identifying relevant scholarly literature for the extents of a given task or application is, however a complex and time consuming activity. Despite the large number of tools developed over the years to support scholars in their literature surveying activity, such as Google Scholar, Microsoft Academic search, and others, the best way to access quality papers remains asking a domain expert who is actively involved in the field and knows research trends and directions. State of the art systems, in fact, either do not allow exploratory search activity, such as identifying the active research directions within a given topic, or do not offer proactive features, such as content recommendation, which are both critical to researchers. To overcome these limitations, we strongly advocate a paradigm shift in the development of scholarly data access tools: moving from traditional information retrieval and filtering tools towards automated agents able to make sense of the textual content of published papers and therefore monitor the state of the art. Building such a system is however a complex task that implies tackling non trivial problems in the fields of Natural Language Processing, Big Data Analysis, User Modelling, and Information Filtering. In this work, we introduce the concept of Automatic Curator System and present its fundamental components.openDottorato di ricerca in InformaticaopenDe Nart, Dari

    On GS-Monoidal Theories for Graphs with Nesting

    No full text
    We propose a sound and complete axiomatisation of a class of graphs with nesting and either locally or globally restricted nodes. Such graphs allow to represent explicitly and at the right level of abstraction some relevant topological and logical features of models and systems, including nesting, hierarchies, sharing of resources, and pointers or links. We also provide an encoding of the proposed algebra into terms of a gs-monoidal theory, and through these into a suitable class of wellscoped term graphs, showing that this encoding is sound and complete with respect to the axioms of the algebra

    Graphs and Graph Transformations for Object-Oriented and Service-Oriented Systems

    Get PDF
    Theories of graphs and graph transformations form an important part of the mathematical foundations of computing, and have been applied in a wide range of areas from the design and analysis of algorithms to the formalization of various computer systems and programs. In this thesis, we study how graphs and graph transformations can be used to model the static structure and dynamic behavior of object-orientated and service-oriented systems. Our work is mainly motivated by the difficulty in understanding and reasoning about objectorientated and service-oriented programs, which have more sophisticated features compared with traditional procedural programs. We show that the use of graphs and graphs transformations provides both an intuitive visualization and a formal representation of object-orientated and serviceoriented programs with these features, improving people’s understanding of the execution states and behaviors of these programs. We provide a graph-based type system, operational semantics and refinement calculus for an object-oriented language. In this framework, we define class structures and execution states of oo programs as directed and labeled graphs, called class graphs and state graphs, respectively. The type system checks whether a program is well-typed based on its class graph, while the operational semantics defines each step of program execution as a simple graph transformations between state graphs. We show the operational semantics is type-safe in that the execution of a well-typed program does not “go wrong”. Based on the operational semantics, we study the notion of structure refinement of oo programs as graph transformations between their class graphs. We provide a few groups of refinement rules for various purposes such as class expansion and polymorphism elimination and prove their soundness and relative completeness. We also propose a graph-based representation of service-oriented systems specified in a serviceoriented process calculus. In this framework, we define states of service-oriented systems as hier- archical graphs that naturally capture the hierarchical nature of service structures. For this, we exploit a suitable graph algebra and set up a hierarchical graph model, in which graph transformations are studied following the well-known Double-Pushout approach. Based on this model, we provide a graph transformation system with a few sets of graph transformation rules for various purposes such as process copy and process reduction. We prove that the graph transformation system is sound and complete with respect to the reduction semantics of the calculus
    corecore