7,267 research outputs found

    Runtime Analysis for Self-adaptive Mutation Rates

    Full text link
    We propose and analyze a self-adaptive version of the (1,λ)(1,\lambda) evolutionary algorithm in which the current mutation rate is part of the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of O(nλ/logλ+nlogn)O(n\lambda/\log\lambda+n\log n) when λ\lambda is at least ClnnC \ln n for some constant C>0C > 0. For all values of λClnn\lambda \ge C \ln n, this performance is asymptotically best possible among all λ\lambda-parallel mutation-based unbiased black-box algorithms. Our result shows that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. At the same time, it proves that a relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gie{\ss}en, Witt, and Yang~(GECCO~2017) can be replaced by our simple endogenous scheme. On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift

    The contribution of statistical physics to evolutionary biology

    Full text link
    Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. We discuss aspects of population genetics that have embraced methods from physics: amongst others, non-equilibrium statistical mechanics, travelling waves, and Monte-Carlo methods have been used to study polygenic evolution, rates of adaptation, and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics, for example, by following the distribution of paths taken by a population through time.Comment: 18 pages, 3 figures, glossary. Accepted in Trend in Ecology and Evolution (to appear in print in August 2011

    Better Runtime Guarantees Via Stochastic Domination

    Full text link
    Apart from few exceptions, the mathematical runtime analysis of evolutionary algorithms is mostly concerned with expected runtimes. In this work, we argue that stochastic domination is a notion that should be used more frequently in this area. Stochastic domination allows to formulate much more informative performance guarantees, it allows to decouple the algorithm analysis into the true algorithmic part of detecting a domination statement and the probability-theoretical part of deriving the desired probabilistic guarantees from this statement, and it helps finding simpler and more natural proofs. As particular results, we prove a fitness level theorem which shows that the runtime is dominated by a sum of independent geometric random variables, we prove the first tail bounds for several classic runtime problems, and we give a short and natural proof for Witt's result that the runtime of any (μ,p)(\mu,p) mutation-based algorithm on any function with unique optimum is subdominated by the runtime of a variant of the \oea on the \onemax function. As side-products, we determine the fastest unbiased (1+1) algorithm for the \leadingones benchmark problem, both in the general case and when restricted to static mutation operators, and we prove a Chernoff-type tail bound for sums of independent coupon collector distributions.Comment: Significantly extended version of a paper that appeared in the proceedings of EvoCOP 201

    Unbiased Black-Box Complexities of Jump Functions

    Full text link
    We analyze the unbiased black-box complexity of jump functions with small, medium, and large sizes of the fitness plateau surrounding the optimal solution. Among other results, we show that when the jump size is (1/2ε)n(1/2 - \varepsilon)n, that is, only a small constant fraction of the fitness values is visible, then the unbiased black-box complexities for arities 33 and higher are of the same order as those for the simple \textsc{OneMax} function. Even for the extreme jump function, in which all but the two fitness values n/2n/2 and nn are blanked out, polynomial-time mutation-based (i.e., unary unbiased) black-box optimization algorithms exist. This is quite surprising given that for the extreme jump function almost the whole search space (all but a Θ(n1/2)\Theta(n^{-1/2}) fraction) is a plateau of constant fitness. To prove these results, we introduce new tools for the analysis of unbiased black-box complexities, for example, selecting the new parent individual not by comparing the fitnesses of the competing search points, but also by taking into account the (empirical) expected fitnesses of their offspring.Comment: This paper is based on results presented in the conference versions [GECCO 2011] and [GECCO 2014

    Efficient Detectors for MIMO-OFDM Systems under Spatial Correlation Antenna Arrays

    Full text link
    This work analyzes the performance of the implementable detectors for multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technique under specific and realistic operation system condi- tions, including antenna correlation and array configuration. Time-domain channel model has been used to evaluate the system performance under realistic communication channel and system scenarios, including different channel correlation, modulation order and antenna arrays configurations. A bunch of MIMO-OFDM detectors were analyzed for the purpose of achieve high performance combined with high capacity systems and manageable computational complexity. Numerical Monte-Carlo simulations (MCS) demonstrate the channel selectivity effect, while the impact of the number of antennas, adoption of linear against heuristic-based detection schemes, and the spatial correlation effect under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.Comment: 26 pgs, 16 figures and 5 table

    Offspring Population Size Matters when Comparing Evolutionary Algorithms with Self-Adjusting Mutation Rates

    Full text link
    We analyze the performance of the 2-rate (1+λ)(1+\lambda) Evolutionary Algorithm (EA) with self-adjusting mutation rate control, its 3-rate counterpart, and a (1+λ)(1+\lambda)~EA variant using multiplicative update rules on the OneMax problem. We compare their efficiency for offspring population sizes ranging up to λ=3,200\lambda=3,200 and problem sizes up to n=100,000n=100,000. Our empirical results show that the ranking of the algorithms is very consistent across all tested dimensions, but strongly depends on the population size. While for small values of λ\lambda the 2-rate EA performs best, the multiplicative updates become superior for starting for some threshold value of λ\lambda between 50 and 100. Interestingly, for population sizes around 50, the (1+λ)(1+\lambda)~EA with static mutation rates performs on par with the best of the self-adjusting algorithms. We also consider how the lower bound pminp_{\min} for the mutation rate influences the efficiency of the algorithms. We observe that for the 2-rate EA and the EA with multiplicative update rules the more generous bound pmin=1/n2p_{\min}=1/n^2 gives better results than pmin=1/np_{\min}=1/n when λ\lambda is small. For both algorithms the situation reverses for large~λ\lambda.Comment: To appear at Genetic and Evolutionary Computation Conference (GECCO'19). v2: minor language revisio

    The CMA Evolution Strategy: A Tutorial

    Full text link
    This tutorial introduces the CMA Evolution Strategy (ES), where CMA stands for Covariance Matrix Adaptation. The CMA-ES is a stochastic, or randomized, method for real-parameter (continuous domain) optimization of non-linear, non-convex functions. We try to motivate and derive the algorithm from intuitive concepts and from requirements of non-linear, non-convex search in continuous domain.Comment: ArXiv e-prints, arXiv:1604.xxxx
    corecore