
Aberystwyth University

The (1+(λ,λ)) Genetic Algorithm on the Vertex Cover Problem
Buzdalov, Maxim

Published in:
Proceedings of IEEE Congress on Evolutionary Computation

DOI:
10.1109/CEC55065.2022.9870224

Publication date:
2022

Citation for published version (APA):
Buzdalov, M. (2022). The (1+(λ,λ)) Genetic Algorithm on the Vertex Cover Problem: Crossover Helps Leaving
Plateaus. In Proceedings of IEEE Congress on Evolutionary Computation (2022 IEEE Congress on Evolutionary
Computation, CEC 2022 - Conference Proceedings). IEEE Press.
https://doi.org/10.1109/CEC55065.2022.9870224

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Mar. 2023

https://doi.org/10.1109/CEC55065.2022.9870224
https://pure.aber.ac.uk/portal/en/persons/maxim-buzdalov(d85673f2-0512-4e57-9b9e-417b8ee0c67d).html
https://pure.aber.ac.uk/portal/en/publications/the-1-genetic-algorithm-on-the-vertex-cover-problem(6604a7c0-e079-4028-a7c5-3a36681afb57).html
https://pure.aber.ac.uk/portal/en/publications/the-1-genetic-algorithm-on-the-vertex-cover-problem(6604a7c0-e079-4028-a7c5-3a36681afb57).html
https://doi.org/10.1109/CEC55065.2022.9870224

The (1 + (λ, λ)) Genetic Algorithm on the Vertex
Cover Problem: Crossover Helps Leaving Plateaus

Maxim Buzdalov
ITMO University

Saint Petersburg, Russia
mbuzdalov@gmail.com

Abstract—Many discrete optimization problems feature
plateaus, which are hard to evolutionary algorithms due to the
lack of fitness guidance. While higher mutation rates may assist
in making a jump from the plateau to some better search point,
an algorithm typically performs random walks on a plateau,
possibly with some assistance from diversity mechanisms.

The vertex cover problem is one of the important NP-hard
problems. We found that the recently proposed (1+(λ,λ)) ge-
netic algorithm solves certain instances of this problem, including
those that are hard to heuristic solvers, much faster than simpler
mutation-only evolutionary algorithms.

Our theoretical analysis shows that there exists an intricate
interplay between the problem structure and the way crossovers
are used. It results in a drift towards the points where finding the
next improvement is much easier. While this condition is formally
proven only on one class of instances and for a subset of search
points, experiments show that it is responsible for performance
improvements in a much larger range of cases.

I. INTRODUCTION

Theoretical understanding of discrete evolutionary algo-
rithms [1], [2] is nowadays not limited to universal statements,
like convergence to the global optimum with probability 1, and
to analysis on artificially constructed problems with simple
definitions that highlight particular properties of an algorithm.
A lot of work has been recently done for discrete combina-
torial optimization problems, including various problems on
graphs, such as minimal spanning trees [3]–[5], the traveling
salesperson problem both by conventional [6]–[8] and gray-
box algorithms [9], [10], shortest path problems [11]–[13].
and many other problems.

One of such problems is the (minimum) vertex cover
problem. Given a graph, one needs to select a subset of its
vertices of the minimum size, such that for each edge at least
one of its endpoints is selected. It is NP-hard [14], and quite
hard to solve in practice compared to some other NP-hard
problems. Hence, to obtain satisfactory results on real-world
instances, various approximation algorithms are used [15],
with a typical guarantee being an approximation factor of
2− o(1). Evolutionary algorithms have also been reported to
solve the vertex cover problem quite well [16], [17] either on
their own or as a refinement procedure applied to the results
of other approximation algorithms [18].

However, the vertex cover problem appears to be an in-
teresting benchmark problem for studying how evolutionary
algorithms can leave local optima in the favor of better search
points including the global optimum. The latter has been a

research topic for the recently developed algorithms, such as
the (1+(λ, λ)) genetic algorithm, or the (1+(λ, λ)) GA. This
algorithm, proposed in [19], is designed in such a way that it
has notable theoretical guarantees of improved performance
compared to the algorithms using only mutation operators.
Such guarantees have been initially proven only for very
simple unimodal problems [20], however, later similar advan-
tages have also been proven for simply-defined multimodal
problems [21] with relatively small parameter changes.

In this respect, the (1+(λ, λ)) GA has the fate similar to the
“fast genetic algorithms” using heavy-tailed distributions [22].
An interesting fact is that all existing works on both algo-
rithmic families regarding multimodal functions only consider
the problems where the only way to leave a local optimum is
to jump directly to the global optimum, possibly with some
guidance from inferior solutions.

Currently, not much is known how the (1+(λ, λ)) GA copes
with the vertex cover problems. We make first steps towards
this direction, already with some insights that we find striking
and inspiring. Namely, we have identified a regime when the
(1 + (λ, λ)) GA performs a random walk on a fitness plateau,
like the mutation-only algorithms, however, unlike them, the
crossover biases this walk towards the exit from this plateau.

The rest of the paper is organized as follows. Section II
introduces the vertex cover problem, definitions of the algo-
rithms and recalls the necessary results from the literature.
The next sections consider different classes of the vertex cover
problem. Section III considers the bipartite graph, where the
(1 + (λ, λ)) GA outperforms the (1 + 1) EA by employing a
kind of divide-and-conquer scheme to jump from the local op-
timum to the global one. Here, the heavy-tailed versions of the
algorithms solve the problem much easier due to the properties
of the underlying power-law distributions. Section IV con-
siders another instance, the so-called Papadimitrou-Steiglitz
graph, where the (1+(λ, λ)) GA essentially uses crossover to
introduce drift towards the switchpoint to the global optimum
on a plateau of local optima. Note that in this case using heavy-
tailed distributions alone does not improve the performance
to the same extent as using the crossover in the way the
(1 + (λ, λ)) GA does. Section V evaluates all the algorithms
on randomly generated instances of the vertex cover problem.
The results suggest that both of the scenarios above appear “in
the wild” with similar frequencies. Finally, Section VI gives
the concluding remarks.

II. DEFINITIONS AND RELATED WORK

A. The (1+1) EA with Binomial and Power-Law Distributions

The (1 + 1) EA is the simplest evolutionary algorithm,
which received a lot of attention in theoretical analysis [23].
It has only one parent, and on every iteration it generates
one offspring via a mutation operator, which then replaces the
parent if it is not worse than the parent by the fitness value.

The pseudocode of the (1 + 1) EA is given in Algorithm 1.
Note that it is defined using an arbitrary mutation strength
distribution M, since lots of work has been recently done on
how these distributions may, or should, look like. The standard
bit mutation is represented as the binomial distribution over
the number of flipped bits, that is, M ← B(n, 1/n) for
the problem size n. However, recent research proposed the
use of the heavy-tailed distributions, such as the power-law
distribution [22]. The evolutionary algorithms with heavy-
tailed distributions are commonly known as “fast” evolution-
ary algorithms. In power-law distributions, the probability of
sampling i bits is proportional to i−β , where β is the control
parameter that should be greater than 1. The paper [22] used
a slightly different approach, namely, it sampled a number i
from such a heavy-tailed distribution and then flipped each bit
with probability i/n. From this point of view, M is a tricky
composition of a heavy-tailed distribution and of a binomial
distribution.

Some of the recent research also advocated for use of
truncated distributions that never produce zero values [24],
since flipping zero bits never helps in noise-free optimization.
(Note that in population-based algorithms flipping zero bits
may introduce a clone of an existing individual to the popula-
tion, which may serve good purposes; however, reformulating
such algorithms to avoid the necessity of creating a clone is
arguably a better approach). This saves a constant factor in
many analyses, which even helped in the past to see the effects
that have been otherwise hindered [25].

In this work, we consider two mutation distributions forM.

• The resampling mutation x ∼ B(n, 1/n) | x > 0,
proposed in [24].

• The power-law mutation with Pr[x] = x−β/(
∑n
i=1 i

−β).
Note that this is somewhat different than [22]: first, by
directly using the power law without having a binomial
distribution as a proxy, and second, by allowing to
flip up to n bits instead of only up to n/2 bits. This
is the approach adopted in the Nevergrad optimization
platform [26]. Due to the binomial distribution being
well-concentrated for n·p� 1, getting rid of it as a proxy
distribution leaves most of the properties of the algorithm
intact, and allowing to flip up to n bits was shown to
improve the performance in certain scenarios [27]. This
mutation operator also flips a positive number of bits.

Slighly abusing the notation, we call the (1+1) EA with the
former mutation operator simply the (1 + 1) EA, and with the
latter operator, with β chosen to be equal to 1.1 by preliminary
experiments, the (1 + 1) FEA where “F” means fast.

Algorithm 1 The (1 + 1) EA to maximize f : {0, 1}n → R
Require: mutation strength distribution M
x← sample uniformly from {0, 1}n
query f(x)
while true do

`← sample from M
y ← flip ` pairwise different, uniformly chosen bits in x
query f(y)
if f(y) ≥ f(x) then

x← y
end if

end while

k nodes

all possible edges

main k + 2 nodes

aux k + 2 nodes

Fig. 1. The Papadimitrou-Steiglitz graph and its minimum cover in gray

B. The Vertex Cover Problem

Given an undirected graph (V,E) with v = |V | vertices
and e = |E| edges, a vertex cover is a subset of vertices
VC ⊆ V such that for any edge (v1, v2) ∈ E either of its
endpoints belongs to this subset: (v1 ∈ VC)∨ (v2 ∈ VC). The
minimum vertex cover problem is to find a vertex cover of the
given graph such that it has the minimum possible size. Its
decision version, the vertex cover problem, decides whether
there exists a vertex cover of at most the given size, and it
is NP-complete [14], hence the minimization problem is NP-
hard. In this paper we consider the minimization problem, and
call it simply the vertex cover problem for brevity.

The vertex cover problem is quite hard even for approxima-
tion; it is known that its polynomial worst-case approximation
cannot be better than a factor of 2 if the unique game
conjecture is true [28]. Hence it is subject to much research
on approximation algorithms. In particular, in the book [15,
Chapter 15, Section 6], a heuristic local search algorithm
called Vercov has been proposed and analyzed. The analysis
includes a family of problem instances where Vercov produces
the worst approximation, one of which has been used in many
subsequent papers and was called the Papadimitrou-Steiglitz
graph, or the PS-graph. This is a complete bipartite graph on
k+ 2 and k vertices, where each of the k+ 2 vertices has an
additional vertex attached by a single edge (Figure 1). This
graph is a subject of study in one of the sections of this paper.

To be solved by an evolutionary algorithm, we need to
determine the representation and the fitness function. Our
representation is a bit string of size v, where the bit value
of 1 means the corresponding vertex is selected, and 0 means
it is not. The fitness function is the same as in the single-
objective works, say [29]: let x be an individual, and e(x) be
the number of edges uncovered by the vertices selected by x,
then the fitness function is f(x) = e(x) · v + |x|. This way,

if two individuals cover a different number of edges, the one
that covers more is always better. This definition is equivalent
to minimizing the tuple 〈e(x), |x|〉 lexicographically.

C. Vertex Cover and Theory of Evolutionary Algorithms

In probably the first work on theoretical analysis of the
behavior of evolutionary algorithms on the vertex cover
problem [30], He et al. analyzed the simplest evolutionary
algorithm called the (1 + 1) EA, as well as its two modifica-
tions heuristically tailored to the vertex cover problem. These
algorithms use the straightforward representation, namely the
vector of bits corresponding to whether to take a vertex into the
cover, and the fitness function which aims at minimizing the
number of uncovered edges first, and only then at minimizing
the number of chosen vertices. They proved that the (1+1) EA
reaches the feasible vertex cover in time O(v · e), where v is
the number of vertices and e is the number of edges, and finds
the minimum vertex cover in finite but potentially very large
time. They also performed experiments with two classes of
instances, one that is too hard for all the considered algorithms
and another one that is much easier.

In [29], a number of important results have been proven
regarding the behavior of simple evolutionary optimizers, such
as the (1 + 1) EA, on certain instances of the vertex cover
problem, including the PS graph, the bipartite graph, two
instance classes that are hard to solve with overwhelming
probability, and one easy instance class with vertex having
degrees at most 2.

In particular, [29, Lemma 4] proves that RLS finds the opti-
mum on a certain instance of the vertex cover problem in time
O(v log v) with at least constant probability close to 1/2. This
is also the characteristic of many other evolutionary algorithms
that do not employ restarts, including the (1 + 1) EA [29,
Lemma 8], and of many other instances of the vertex cover
problem. With the remaining probability, the search is likely
to hit a local optimum, from which it is difficult to get to the
global one. In particular, in [30] such a bimodal behavior was
spotted for the (1 + 1) EA on another problem instance. That
paper, however, did not provide any explanation or insight
regarding this behavior.

For certain problem instances the local optima with the
same fitness have a structure that allows the optimizer to walk
between them freely. In particular, [29, Lemma 10], for the
studied problem instance, proves that even if the optimizer
is in the local optimum that is just O(1) bit flips apart from
the attractor of the global optimum, it is still quite likely to
go away to a distance that would require exponential time to
reach the global optimum.

In [31] similar results have been proven for simple
population-based algorithms, the (1 + λ) EA and the (µ +
1) EA. Most of these results are really the same as the ones
for the (1 + 1) EA, either with or without restarts. However,
using crossover in an accurate way may improve the efficiency
of the (µ + 1) EA, but only if this crossover is well-aligned
with the graph structure, which one cannot expect in the wild.

The work [18], unlike the previous works (which considered
initializing the algorithms uniformly, by all ones or all ze-
ros), used existing approximation algorithms for initialization.
The employed approximation algorithms were the greedy
algorithm, that takes a random uncovered vertex with the
maximum degree until all vertices are covered, and the max-
imum matching algorithm. This way, an elitist evolutionary
algorithm would produce results which are not worse than
the approximation algorithm. Some cases were found where
the initial approximation is quickly and significantly improved
by an evolutionary algorithm, in other cases no significant
improvement is possible in polynomial time.

Recent work considered multiobjective problem settings,
which on many occasions allow to converge faster and to a bet-
ter approximation [32], weighted vertex cover problems [33],
dynamic vertex cover problems [34], made use of the dual
linear programming formulation [35] and proved upper bounds
that are exponential not in the problem size, but in the size of
the problem’s core, which is the hardest part, thus making evo-
lutionary algorithms the randomized fixed-parameter tractable
algorithms for the vertex cover problem [36].

D. The (1 + (λ, λ)) Genetic Algorithm and Its Modifications

The (1 + (λ, λ)) genetic algorithm is proposed in [19]
as an example of a full-scale evolutionary algorithm that is
designed with inspiration by the black-box complexity theory
and, in particular, can solve a simple benchmark problem
called ONEMAX asymptotically faster than any mutation-
only algorithm. It is also a showcase of the online parameter
control [20], as the version with the one-fifth rule that con-
trols its parameter λ is asymptotically better than any fixed
choice. This algorithm was also shown, and sometimes proven,
to be better than many other algorithms on more practical
problems [37]–[39]. Recently, instead of the active stateful
parameter control, sampling the parameters randomly from
heavy-tailed distributions has been proposed in [21], [40], [41]
with different degrees of freedom and similar performance
advantages.

The generic form of the (1 + (λ, λ)) GA is given in
Algorithm 2. It features two phases in an iteration. The
mutation phase samples a number of offspring at the same
distance ` from the parent, which is usually large. The best
of these offspring is then crossed over, again multiple times,
with the parent in the crossover phase in such a way that much
more bits come from the parent than from the offspring. The
result of the crossover competes with the parent, replacing it
if it is not worse than the parent.

The flavors of the (1 + (λ, λ)) GA differ in how they treat
their parameters λ, p and c, which control the population size,
mutation rate and crossover rate respectively. We consider the
following ones:
• The self-adjusting version with the one-fifth rule. In

this version, λ is subject to self-adjustment, and other
parameters are set as p ← λ/n and c ← 1/λ. Initially,
λ← 1, and every time the best fitness improves at the end
of the iteration, λ← λ/C, where C ≈ 1.5 is a constant.

Algorithm 2 The (1 + (λ, λ)) GA to max. f : {0, 1}n → R
1: n← the problem size
2: x← uniformly at random (u.a.r.) from {0, 1}n
3: for t← 1, 2, 3, . . . do
4: Choose λ, p, c, λ′ ← bλc, ` ∼ B(n, p)
5: for i ∈ {1, 2, . . . , λ′} do . Phase 1: Mutation
6: x(i) ← flip ` uniformly chosen bits in x
7: end for
8: x′ ← u.a.r. from {x(j) | f(x(j)) = max{f(x(i))}}
9: for i ∈ {1, 2, . . . , λ′} do . Phase 2: Crossover

10: for j ∈ [n] do
11: y

(i)
j ← x′j with probability c, otherwise xj

12: end for
13: end for
14: y ← u.a.r. from {y(j) | f(y(j)) = max{f(y(i))}}
15: if f(y) ≥ f(x) then . Selection
16: x← y
17: end if
18: end for

Otherwise, λ← λ ·C1/4. Then λ is truncated to the safe
region of [1;λ] where λ ≥ n is the upper bound. We
consider two versions: λ = 2 ln(n + 1) for the reasons
detailed in [39], and a more aggressive λ = n/4 based
on preliminary experiments.

• The single-parameter heavy-tailed version. Here, λ is
chosen from the power-law distribution with βλ ∈ (2; 3),
while p = λ/n and c = 1/λ. The smaller β, the more
often large λ values are chosen, and since we are dealing
with a hard optimization problem, we chose βλ = 2.1,
although its impact on the performance is not very strong.

• The three-parameter heavy-tailed version. Here, not only
λ, but also other parameters are chosen from the power-
law distributions: p← p′/n and c← c′/n, where p′ and
c′ are sampled from distributions with βp > 1 and βc > 1.
This scheme was proposed and motivated in [41] on the
example of the so-called jump benchmark functions. We
chose βλ = 2.1 for λ and βp = βc = 1.1 for the same
reasons as above.

We also adjusted our implementations of the (1+(λ, λ)) GA
variants so that they do not waste fitness evaluations. Namely,
all the binomial distributions are also resampled when they
produce zeros, the crossover phase is skipped when the Ham-
ming distance of mutants to the parent is one, the crossover
offspring identical to the best mutant are not evaluated, and
the best mutation offspring also competes with the parent in
the final selection stage.

III. THE BIPARTITE GRAPH

The first part of our study considers the bipartite graph of
size v = 2k+ 1 as an instance class. The two halves have the
size of k and k + 1 respectively. The minimum vertex cover
obviously has the size of k by choosing all the vertices from
the small half, whereas the second-best local optimum chooses

0
100
200
300

R
un

s (1 + 1) EA

0

200

400

R
un

s (1 + 1) FEA

0
100
200
300

R
un

s (1 + (λ, λ)) GAH1

0

200

400

R
un

s (1 + (λ, λ)) GAH3

0

100

200

R
un

s (1 + (λ, λ)) GALN

101 103 105 107 109

0

100

200

Fitness evaluations until optimum

R
un

s (1 + (λ, λ)) GAN4

Fig. 2. Distribution histograms: bipartite graphs, v = 11, 1000 runs

all the opposite vertices, and all other individuals have a worse
fitness value.

We perform experiments first. We consider the following
six algorithms, whose definitions were given above:
• (1+1) EA: the (1+1) EA with a (resampling) binomial

mutation operator;
• (1+1) FEA: the (1+1) EA with a heavy-tailed mutation

operator;
• (1 + (λ,λ)) GALN: the (1 + (λ, λ)) GA with self-

adjusted λ ≤ 2 ln(v + 1);
• (1 + (λ,λ)) GAN4: the same with λ ≤ v/4;
• (1 + (λ,λ)) GAH1: the heavy-tailed (1 + (λ, λ)) GA

with only λ sampled randomly;
• (1 + (λ,λ)) GAH3: the same with all three parameters

sampled randomly.
Each of these algorithms is initialized with uniform sam-

pling of each bit in the individual. We consider small half sizes
k ∈ [2; 30], hence v ∈ {5, 7, . . . , 61}. Since non-heavy-tailed
algorithms show runtimes exponential in n, the maximum n
for the (1+1) EA is 11, for the (1+(λ, λ)) GAN4 it is 15, and
for the (1 + (λ, λ)) GALN it is 19. For each problem size and
each algorithm, 1000 independent runs have been performed.

Before presenting the results of these experiments, we shall
discuss the shapes of the runtime distrubutions. For v = 11,
their histograms are given in Fig. 2. One can see that non-
heavy-tailed algorithms show clear bimodal distributions with

0 10 20 30 40 50 60
100

103

106

109
(1 + 1) EA

(1 + 1) FEA

(1 + (λ, λ)) GAH1

(1 + (λ, λ)) GAH3

(1 + (λ, λ)) GALN

(1 + (λ, λ)) GAN4

Fig. 3. Peak-median runtimes: bipartite graphs, 1000 runs. Solid lines
correspond to the peak with larger runtimes, dashed lines indicate the first
peak when present. Medians are plotted, error bars show interquartile ranges.

vastly differing running times. From theoretical works we
know [29] that the (1+1) EA converges in time O(v log v) to
either the local or the global optimum, and in the former case
it needs at least exponential time to reach the global optimum,
as it needs to flip all the bits at once. This explains both the
presence of two peaks and the fact that they have roughly
equal probability to happen, as the probability to hit either
optimum is bound from below by a constant.

For this reason, we cannot simply present the running times
for various sizes with commonly used statistics, such as means
or medians, because these would not show the real picture.
Instead we perform the following procedure beforehands:

• The experimental runs are distributed into the bins based
on their binary logarithm: the i-th bin, i ≥ 0, contains
the runs with the running time between 2i, inclusively,
and 2i+1, exclusively. Let Ci be the number of runs in
the i-th bin.

• The first bin p is looked such that Cp+1 < Cp. This is
the top of the first peak.

• The first bin q > p is looked, such that either Cq < Cq+1

or Cq = 0. This is the end of the first peak. In the first
case, or in the second case when some of the higher bins
additionally have nonzero counts, all the bins beginning
with the q-th are considered to be the second peak.

• If two peaks are present, they are processed separately in
the subsequent analysis.

In particular, the light and dark colors in Fig. 2, when
present, illustrate the first and the second peak found by the
procedure above. Note that, in general, the correctness of such
a procedure is at least questionable, however, given the nature
of the peaks (small polynomial vs exponential runtimes) and
the fact that the first peak is quite well-concentrated, this
simple procedure yields good enough results.

With these precautions, we now present the summary of
the experimental results for the bipartite graph in Fig. 3. The

plots indeed show some clear trends1: while the “hard” peaks
of the non-heavy-tailed algorithms, show the behavior that is
at least exponential in problem size, their “easy” peaks, and
all heavy-tailed algorithms are clearly polynomial.

The good behavior of the heavy-tailed algorithms can be
formulated and proven as follows.

Theorem 1. The expected time that the heavy-tailed algo-
rithms require to move from the local optimum to the global
one on a bipartite graph with v vertices, v is odd, having
halves of bv/2c and dv/2e vertices, is
• O(vβ) for the (1 + 1) FEA;
• O(vβp) for the (1 + (λ, λ)) GAH3 with pλ > 2;
• O(vβλ) for the (1 + (λ, λ)) GAH1;

Proof: We pessimistically assume that these algorithms
stay in the local optimum until they jump directly to the global
one. The (1 + 1) FEA flips all the bits on each iteration with
the probability Θ(v−β), and as its iteration requires only one
fitness evaluation, the expected time until the global optimum
is hit is O(vβ).

The (1 + (λ, λ)) GAH3, similarly, flips all the bits in the
mutants on each iteration with the probability Θ(v−βp). As
for βλ > 2 the expected population size is Θ(1), the global
optimum is hit in expected O(vβp) fitness evaluations.

Finally, the (1 + (λ, λ)) GAH1 samples λ = v with
probability Θ(v−βλ). In this case, p← 1, and all the mutants
are obtained by flipping all the bits. Despite the fact that the
population size is large at this moment, it has been Θ(1) in
expectation in preceding iterations. The last iteration has Θ(v)
fitness evaluations, which is subsumed into the expected time
of O(vβλ).

For the chosen parameter values, the (1 + 1) FEA and
the (1 + (λ, λ)) GAH3 complete the transition in O(v1.1)
expected fitness evaluations, and the (1 + (λ, λ)) GAH1 in
O(v2.1) expected fitness evaluations. Since the time of reach-
ing the local optimum is smaller, but the problem size is
not large enough to distinguish O(v1.1) from Θ(v log v), only
the (1 + (λ, λ)) GAH1 eventually shows a bimodal behavior
starting from v = 23.

Among the non-heavy-tailed algorithms, the transition time
of the (1+1) EA seems to be Θ(vv) as it needs to invert each
bit. The employed resampling version of the (1 + 1) EA flips
all the bits with probability vv · (1 − (1 − 1/v)v), hence for
v = 11 the corresponding time should be roughly 1.86 · 1011.
However, our experiments show times of roughly 109 to 1010,
so it seems that this algorithm in fact does something better.
We formulate and prove a bound which is more precise.

Theorem 2. The expected time for the (1 + 1) EA configured
for the probabilities of:
• p1 of flipping exactly one bit;
• pv of flipping all v bits;
• pw = o(v · p1) of flipping exactly v − 1 bits;

1Two apparent glitches in the plots are due to the (rare) events when the
multiple peaks were not discovered correctly, in which case the median moves
to the easy region and the interquartile ranges visually shrink.

that is required to move from the local optimum to the global
one on a bipartite graph with v vertices, v is odd, having
halves of bv/2c and dv/2e vertices, is

1

pv + v+1
2v pw

· (1± o(1)).

Proof: Note that the fitness of the cover that is different
from a global optimum by adding exactly one arbitrary vertex
from the larger half is the same as the fitness of the local
optimum. Let us call this cover a transitional state.

The following moves are possible from the local optimum:
either (i) all the bits are flipped to reach the global optimum,
or (ii) all but one bits are flipped, such that the remaining bit is
in the large half, to move to a transitional state. Similarly, the
following moves are possible from a transitional state: either
(i) the one missing bit is flipped to reach the global optimum,
(ii) all bits, except for the one missing bit, are flipped to return
to the local optimum, (iii) some pairs of bits may be flipped to
move to another transitional state. One can see that no other
moves are possible, since they decrease the fitness.

Let Tv be the expected time required to get to the global
optimum from the local one, and Tv−1 be the time from any
transitional state. The cases above can be written as follows:

Tv = 1 + pv · 0 + pw
v + 1

2v
Tv−1 +

(
1− pv − pw

v + 1

2v

)
Tv

Tv−1 = 1 +
p1

v
· 0 +

pw
v
Tv +

(
1− p1

v
− pw

v

)
Tv−1

This is solved as a system of linear equations to

Tv =
v
(

2 + pw(v+1)
p1+pw

)
2vpv + pw(v + 1)− p2w(v+1)

p1+pw

and simplified by applying the asymptotical relations from the
theorem statement to get the desired form.

By setting pv = 1/1111/(1 − (1 − 1/11)11) and pw =
11 · (1− 1/11)/1110/(1− (1− 1/11)11) we get the expected
transition time of 3.04 · 109 evaluations for the (1 + 1) EA
with resampling on n = 11, which agrees well with the
experimental results.

Finally we analyse the non-heavy-tailed versions of the
(1+(λ, λ)) GA. We shall note that the only way to eventually
obtain a global optimum when residing at the local optimum
is to flip all the bits (except for maybe one, as the previous
analysis shows) in the mutation phase. The probability of
getting all the bits flipped in the mutation phase times the
probability of accepting all these bits in the crossover phase
is again of order n−n, that is, the canonical version of the
(1 + (λ, λ)) GA may get the global optimum as a mutant,
but then is very likely to discard it. While this fact does not
actually harm with the commonly used notion of first hitting
time, it may drastically decrease the running time in many
situations, including the one occurring in the previous analysis.
Hence considering a good mutant offspring seems to be a good
idea in the general setting.

Due to larger mutation rates in the mutation phase, the (1+
(λ, λ)) GA may flip all the bits, as well as all the bits except

one of the bit in the larger half, much sooner than the (1 +
1) EA. We formalize and prove this statement in the following
theorem.

Theorem 3. The expected time for the (1 + (λ, λ)) GA
configured as follows:
• 1 < λ < v/3, p← λ/v, c← 1/λ;
• λ is rounded down to determine the population size;
• the number of bits to flip in mutants is resampled until

positive;
• the best mutant offspring is taken to the selection stage;

that is required to move from the local optimum to the global
one on a bipartite graph with v vertices, v is odd, having
halves of bv/2c and dv/2e vertices, is

2bλc ·
(
v
λ

)v − (vλ − 1
)v

1 + v+1
2λ (v − λ)

· (1± o(1)).

Proof: We use the same idea as in Theorem 2, taking into
account that

pv =

(
λ
v

)v
1−

(
1− λ

v

)v , pw =

(
1− λ

v

) (
λ
v

)v−1 · v
1−

(
1− λ

v

)v
and that the cost of one iteration is 2λ fitness evaluations. By
substituting these values into the result of Theorem 2, one gets
the desired result.

The only remaining thing is to prove that the probability
of getting from the transitional state, in terms of Theorem 2,
to the global optimum is indeed high enough. In fact, a
very pessimistic way to estimate this probability already gives
a satisfying result. The probability of generating the global
optimum in a single application of mutation is

p′1 =

(
1− λ

v

)v−1 · λv
1−

(
1− λ

v

)v ,

so we can estimate how large it is compared to pw:

pw · v
p′1

=

(
1− λ

v

) (
λ
v

)v−1 · v2(
1− λ

v

)v−1 · λv
= v2 ·

(
λ

v − λ

)v−2

= o(1)

for λ < v/3, hence the global optimum is reached before
rolling back to the local optimum with high probability.

Note that the self-adjusting versions of the (1 + (λ, λ)) GA
hit the threshold value for λ when residing in the local
optimum for just O(log v) iterations, hence Theorem 3 is
applicable to them assuming the maximum λ. Applying the
formula from Theorem 3 to v = 15 and λ = v/4 = 3.75,
we obtain the expected transition time of ≈ 2.54 · 108; to
v = 15 and λ = 2 ln(v + 1) ≈ 5.545 we obtain the time of
≈ 2.07 · 106; to v = 19 and λ = 2 ln(v+ 1) ≈ 5.99 we obtain
the time of ≈ 1.47 · 109. These values agree pretty well with
the experimental data from Fig. 3.

Note that larger λ are better, and the only reason why the
(1 + (λ, λ)) GAN4 seems worse than the (1 + (λ, λ)) GALN
is that v/4 is smaller than 2 ln(v + 1) for small v. The plot
slopes suggest that this relation changes for large enough v.

L-group

G-group

A-group

φ = 6

. . .

L-group

G-group

A-group

φ = 3

. . .

L-group

G-group

A-group

φ = 0

Fig. 4. Local optima network in the PS-graph. Covers are shown in gray.

IV. THE PAPADIMITROU-STEIGLITZ GRAPH

Now we switch to another instance class, the Papadimitrou-
Steiglitz graphs, or PS-graphs. The example of such a graph
is given in Fig. 1. Let v = 3k + 4 be the number of vertices,
and k, k + 2 and k + 2 be the sizes of the groups of nodes.
For brevity, we call the group of size k the L-group (for “local
optimum”), the group of size k+2 connected to it the G-group
(for “global optimim”), and the remaining group the A-group
(for auxiliary vertices).

This instance class features the unique global optimum and
a family of 2k+2 local optima that correspond to choosing
the whole L-group and one of the endpoint nodes for each of
the edge connecting the G-group and the A-group (see Fig. 4
for example). These local optima are connected into a single
plateau by two-bit flips. We denote as φ the number of chosen
vertices in the A-group. If φ = 0, a highly likely event is to
remove one of the vertices from the L-group, which results
in a subsequent fast convergence to the global optimum by
quickly deselecting the whole L-group: it is known that the
(1 + 1) EA does that in O(v log v) time [29].

In general, evolutionary algorithm tend to discover either
the global optimum or one of the local optima, both choices
with constant probability. In the former case, the optimization
is fast. When being in the network of local optima, the (1 +
1) EA typically proceeds by flipping pairs of bits at the edges
connecting the G-group and the A-group, which happens at
random, so the whole process is the random walk where value
φ is typically in the vicinity of (k + 2)/2. Only with a very
small probability, the bits are flipped in such a way that the G-
group is selected, the L-group loses at lease one vertex, and
the A-group becomes almost empty. Such an event is more
likely as φ approaches zero, however, due to the strong drift
towards the center, φ can be small very infrequently and for
comparatively short periods of time. For these reasons, the (1+
1) EA has a 2Ω(3

√
n) lower bound on its expected runtime [29,

0
100
200
300

R
un

s (1 + 1) EA

0
100
200
300

R
un

s (1 + 1) FEA

0
100
200
300

R
un

s (1 + (λ, λ)) GAH1

0
100
200
300

R
un

s (1 + (λ, λ)) GAH3

0
100
200
300

R
un

s (1 + (λ, λ)) GALN

103 104 105 106 107 108 109

0

100

200

Fitness evaluations until optimum

R
un

s (1 + (λ, λ)) GAN4

Fig. 5. Distribution histograms: PS-graphs, v = 73, 1000 runs

Theorem 3].
Clearly, the (1 + 1) FEA cannot do radically better, as

although it can flip Θ(n) bits with inversely polynomial
probabilities, it still has to guess which exactly bits to flip.
Otherwise, it is also doomed to random walks in the local
optima network. Technically, our version of the (1 + 1) FEA
can flip all bits and reach the global optimum from the state
of φ = k+ 2, however, this state is just as unlikely to visit as
the state of φ = 0.

Our experiments, with the same algorithmic setting and the
same approach to partition the outcomes into hard and easy
ones as in the previous section, reveal a pretty interesting
picture though. Fig. 5 shows the histograms, which are this
time bimodal for all the employed algorithms. They suggest
that the (1 + 1) FEA performs somewhat better than the
(1+1) EA, however, the (1+(λ, λ)) GA family does a much
better job. The runtime plots are presented in Fig. 6.

Here we can see that the (1 + (λ, λ)) GA, while still being
exponential in the number of vertices in the bad case, tend to
be exponentially faster than both the (1 + 1) EA and the (1 +
1) FEA. With regards to λ, the trends seem to be, similar to the
previous section, that the greater λ the better the performance.
However, this time such small runtimes as roughly 2 · 106 for
v = 73 and hence k = 23 cannot be simply attributed to high
mutation rates in the mutation phase and acceptance of the
best mutant, as even with λ = n/4 flipping this many bits

10 20 30 40 50 60 70

101

104

107

1010

(1 + 1) EA

(1 + 1) FEA

(1 + (λ, λ)) GAH1

(1 + (λ, λ)) GAH3

(1 + (λ, λ)) GALN

(1 + (λ, λ)) GAN4

Fig. 6. Peak-median runtimes: PS-graphs, 1000 runs. Solid lines correspond
to the peak with larger runtimes, dashed lines indicate the first peak when
present. Medians are plotted, error bars show interquartile ranges.

correctly is still unlikely.
Instead, we conjecture that the crossover mechanism that

follows selection at the mutation phase is the key for suc-
cess. Unfortunately, due to the complexity of the interaction
between the algorithm and the problem, this time we cannot
yet be as rigorous as even in the previous section. Instead,
we formulate our conjecture in not very rigorous terms, and
augment it with a theorem that shows why this conjecture can
be true and points at the way to prove it rigorously.

Conjecture 1. On the Papadimitrou-Steiglitz instance class of
the vertex cover problem, the (1 + (λ, λ)) GA selects mutants
in such a way that bit flips exchanging a vertex from the A-
group with a matching vertex from the G-group are more likely
compared to the opposite bit flips than it would happen at
random.

This happens because, with high probability, a number of
vertices from the L-group is deselected in the mutants, which
penalizes mutants with small number of vertices in the G-
group due to the number of uncovered edges dominated by the
product of numbers of missing vertices in these two groups.

Together, this phenomenon introduces an additional drift on
the local optima network towards decreasing φ, which makes
it more likely to occasionally jump towards the vicinity of the
global optimum in the mutation phase.

We prove this conjecture in a specific condition of φ = k+2
2 .

Under random walks, this state has a zero drift, which means
that the move to either direction is equally likely. However,
the (1 + (λ, λ)) GA has a pronounced drift towards smaller
values of φ.

Theorem 4. On the Papadimitrou-Steiglitz instance class of
the vertex cover problem, in a state defined by φ = k+2

2 ,
the (1 + (λ, λ)) GA with λ = ω(log v) transitions to a state
with φ′ < k+2

2 with probability strictly greater than 1/2
conditioned on the transition happening.

Proof: The state with φ = k+2
2 has an equal number

of zero and one bits in the G-group, hence the event E0 of

flipping more zero bits than one bits in this group has the same
probability of the event E1 of flipping more one bits than zero
bits. Obviously, P [E0] = P [E1] > 0.

Consider a random variable Xu that corresponds to the
mutant having the best fitness conditioned on that u bits in
the L-group are flipped in that offspring. All mutants with the
same u have fitness uv · |g|+O(λv), where g is the number of
zero bits in the G-group, where the first addend corresponds
to uncovered edges between the L-group and the G-group,
and the second one corresponds to uncovered edges between
the G-group and the A-group, as well as to the change in the
number of selected vertices. Since, due to Chernoff bounds,
u = λk

v ± c1
√

λk
v log λk

v and g = k+2
2 ± c2

√
λk
v log λk

v with
probability 1 − O(v−c3) for suitable constants c1, c2, c3, the
first addend is asymptotically larger than the second. Hence,
whenever two or more mutants are generated with the same
u, they are effectively compared by g, where smaller g have
an advantage.

For this reason, Pr[Xu flipped more zero than one bits] >
1
2 conditioned on that there are two or more mutants with the
same u. Given that mutants are created independently, for each
u in the range above the probability of having two or more
mutants is strictly nonzero. Despite mutants with different u
may compare in arbitrary way depending on how their u and
g relate, for each u the better mutant is selected with nonzero
probability, and with the remaining probability the g value of
that mutant is distributed as if no selection happens. Hence,
the selection towards smaller φ′ = g happens with nonzero
probability, and otherwise no preference is made.

We finish by noting that the transition happens only if pairs
of matching bits in the G-group and the A-group are flipped,
while the selection process happens only on the G-group, and
some of the bits flipped in the right direction may not have
the matching bit flipped. However, bit flipping in the A-group
does not have any negative effect on the selection process2.
Hence, we may consider it as an independent random process
without worsening the result. In this case, each changed bit
in the G-group has a probability of λ/v to be augmented
with a matching bit flip in the A-group. The crossover phase
translates an increased probability of flipping zero bits in the
G-group to an increased probability of constructing a crossover
offspring representing a valid cover with fitness 2k + 4 and
smaller φ′. Since all crossover offspring with fitness 2k + 4
have the same chance to become the next parent, the result
also has the increased probability to have the smaller φ′, which
concludes the proof.

We may also note that, due to the effective range for u in-
duced by Chernoff bounds, which has the size O(

√
λk
v log λk

v)

with overwhelming probability, and recalling that v = 3k+ 4,
the population of λ mutants hits at least one of the possible
u value at least twice due to the pigeonhole principle. This
means that selection actually happens in the mutant population

2In fact, the impact of the bits from the A-group biases slightly towards
deselection of these bits, which makes moves to larger φ even more compli-
cated.

TABLE I
SUMMARY OF EXPERIMENTS ON RANDOM GRAPHS

(1 + 1) EA (1 + 1) EA (1 + 1) FEA Count
vs vs vs

(1 + 1) FEA (1 + (λ, λ)) GALN (1 + (λ, λ)) GALN
< < < 23
< < ≈ 159
< < > 119
< ≈ ≈ 69
< ≈ > 88
< > > 21
≈ < < 1
≈ ≈ ≈ 12
≈ ≈ > 2
≈ > > 31
> < < 2
> ≈ < 4
> ≈ ≈ 1
> > < 9
> > ≈ 88
> > > 71

< / ≈ / > < / ≈ / > < / ≈ / >
479 / 46 / 175 304 / 176 / 220 39 / 329 / 332

for at least one of the values of u with the same overwhelming
probability.

V. RANDOM GRAPHS

To investigate the picture outside of the particular instance
classes, we considered generating random graphs, finding their
minimum vertex cover and running the algorithms mentioned
above until they find the optimum. Namely, we consider the
number of vertices v ∈ [10..16], the number of edges is e =
min{v(v+ 1)/2, 5 · v}, and the edges are chosen uniformly at
random. For each problem size v, we generated 100 instances,
and for each instance each algorithm was run 1000 times.

In fact, such a small problem size was chosen, as the (1 +
1) EA found some of the larger instances so complicated that it
would apparently take it several days to finish. This aligns well
with the worst-case bounds of order npoly(n). Other algorithms,
however, did not show such performance degradation, although
exponential runtimes were still possible.

We chose the (1 + 1) EA, the (1 + 1) FEA and the (1 +
(λ, λ)) GALN as the representative algorithms to compare. The
whole comparison is performed on the hard peaks, extracted
as mentioned in Section III, taking the whole set of runs if
the peaks could not be separated. First, we validated that the
(1+1) FEA and the (1+(λ, λ)) GALN are never significantly
worse than the (1 + 1) EA: our results do not contain a single
occasion when the worst runtime of the former algorithms
exceeds the worst runtime of the (1 + 1) EA by five times or
more. This essentially means that other algorithms, including
even the (1+(λ, λ)) GALN, do not stuck in the cases (1+1) EA
finds easy.

Next, for each instance we performed the Wilcoxon rank
sum test [42] for each pair of these three algorithms. Note
that, based on the insights from the previous sections, this
median-based comparison makes sense for the extracted peaks,
but it does not make sense to be run on the unprocessed
data, since the median is typically in the easy range, and

may spuriously oscillate. We say that algorithm A is more
efficient than algorithm B (which maps to A < B) if the
corresponding one-sided rank sum test produces a p-value
less than 10−3. We don’t perform any post-hoc correction
since our aim is to roughly classify the instances by how
the results of the algorithms are related, and not to find an
outlier to be declared statistically significant. Hence, based on
the results of our experiments, each instance is annotated by
three comparison outcomes, each having three possible values
(“significantly smaller”, “significantly greater” or “similar”).

Table I presents the results of running this statistical com-
parison. Based on pairwise comparisons, one can see that the
(1+1) EA is not worse than others in 67.5% of cases, whereas
the (1 + (λ, λ)) GALN is second (54.7%) and the (1 + 1) FEA
is the last (16.7%). The (1 + 1) EA wins the (1 + 1) FEA
2.7 times more often than it loses, which suggests that many
instances can be solved easily with small mutation rates. When
comparing the (1 + 1) FEA with the (1 + (λ, λ)) GALN, both
of which are capable of long jumps, one can see that the latter
wins much more often (47%) and loses very rarely (6%).

With some caution, based on these results we may conjec-
ture that the effects from the crossover, as opposite to just
employing higher mutation rates with heavy-tailed mutation,
have a positive effect quite frequently, even on such small
problem sizes. A stronger conjecture would be that the just-
discovered effect of adding beneficial drift to the plateaus of
local optima, apparently abundant in the vertex cover problem,
is responsible for a fair share of these benefits — however,
more investigation is definitely needed.

VI. CONCLUSION

Taking the vertex cover problem as an example, we have
shown, though not as rigorously as one may desire, that the
crossover mechanism employed by the (1 + (λ, λ)) genetic
algorithm may give additional benefit by introducing drift onto
the fitness-flat local optima networks towards regions where
improvement is more likely. This is not the only mechanism
that helps in such conditions, as increased mutation rates
coupled with possible acceptance of the best mutant also play
a significant role in the good performance of this algorithm,
however, it is probably the most surprising one.

As of now, the size of this effect is not quantified theo-
retically — only with experiments, which, however, indicate
that it may be large enough to be worth investigating in detail.
This is complicated by the necessity of tracking the probability
to reach the global optimum from each of the local optima
forming a network with great precision. We hope that suitable
theoretical tools, such as drift theorems [43], [44] and plateau
analysis [45] will eventually make it possible. In turn, this
will give more recipes for how one may improve evolutionary
algorithms by a proper introduction of crossover.

ACKNOWLEDGMENTS

This work was supported by the Analytical Center
for the Government of the Russian Federation (IGK
000000D730321P5Q0002), agreement No. 70-2021-00141.

REFERENCES

[1] A. Auger and B. Doerr, Theory of Randomized Search Heuristics:
Foundations and Recent Developments. River Edge, NJ, USA: World
Scientific Publishing Co., Inc., 2011.

[2] B. Doerr and F. Neumann, Eds., Theory of Evolutionary Computation—
Recent Developments in Discrete Optimization. Springer, 2020.

[3] F. Neumann and I. Wegener, “Minimum spanning trees made easier
via multi-objective optimization,” Natural Computing, vol. 5, no. 3, pp.
305–319, 2006.

[4] ——, “Randomized local search, evolutionary algorithms, and the min-
imum spanning tree problem,” Theoretical Computer Science, vol. 378,
no. 1, pp. 32–40, 2007.

[5] V. Roostapour, J. Bossek, and F. Neumann, “Runtime analysis of evolu-
tionary algorithms with biased mutation for the multi-objective minimum
spanning tree problem,” in Proceedings of Genetic and Evolutionary
Computation Conference, 2020, pp. 551–559.

[6] S. Nallaperuma, F. Neumann, and D. Sudholt, “A fixed budget analysis
of randomized search heuristics for the traveling salesperson problem,”
in Proceedings of Genetic and Evolutionary Computation Conference,
2014, pp. 807–814.

[7] S. Nallaperuma, M. Wagner, F. Neumann, B. Bischl, O. Mersmann,
and H. Trautmann, “A feature-based comparison of local search and
the Christofides algorithm for the travelling salesperson problem,” in
Proceedings of Foundations of Genetic Algorithms XII, 2013, pp. 147–
160.

[8] O. Mersmann, B. Bischl, J. Bossek, H. Trautmann, M. Wagner, and
F. Neumann, Local Search and the Traveling Salesman Problem: A
Feature-Based Characterization of Problem Hardness. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012, pp. 115–129.

[9] D. S. Sanches, D. Whitley, and R. Tinós, “Improving an exact solver
for the traveling salesman problem using partition crossover,” in Pro-
ceedings of Genetic and Evolutionary Computation Conference, 2017,
pp. 337–344.

[10] L. D. Whitley, F. Chicano, G. Ochoa, A. M. Sutton, and R. Tinós,
“Next generation genetic algorithms,” in Proceedings of Genetic and
Evolutionary Computation Conference Companion, 2019, pp. 1113–
1136.

[11] B. Doerr, D. Johannsen, T. Kötzing, F. Neumann, and M. Theile, “More
effective crossover operators for the all-pairs shortest path problem,”
Theoretical Computer Science, vol. 471, pp. 12–26, 2013.

[12] B. Doerr, E. Happ, and C. Klein, “Tight analysis of the (1+1)-EA for the
single source shortest path problem,” Evolutionary Computation, vol. 19,
no. 4, pp. 673–691, 2011.

[13] B. Doerr, A. R. Hota, and T. Kötzing, “Ants easily solve stochastic
shortest path problems,” in Proceedings of Genetic and Evolutionary
Computation Conference, 2012, pp. 17–24.

[14] R. Karp, “Reducibility among combinatorial problems,” in 50 Years of
Integer Programming 1958–2008, 2010, pp. 219–241.

[15] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. New York: Dover, 1998.

[16] S. Khuri and T. Bäck, “An evolutionary heuristic for the minimum
vertex cover problem,” in Proceedings of KI-94 Workshop on Genetic
Algorithms Within Framework of Evolutionary Computation, 1994, pp.
86–90.

[17] I. K. Evans, “Evolutionary algorithms for vertex cover,” in Proceedings
of International Conference on Evolutionary Programming, ser. Lecture
Notes in Computer Science, 1998, no. 1447, pp. 377–386.

[18] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt, “Analyses
of simple hybrid algorithms for the vertex cover problem,” Evolutionary
Computation, vol. 17, no. 1, pp. 3–19, 2009.

[19] B. Doerr, C. Doerr, and F. Ebel, “From black-box complexity to
designing new genetic algorithms,” Theoretical Computer Science, vol.
567, pp. 87–104, 2015.

[20] B. Doerr and C. Doerr, “Optimal static and self-adjusting parameter
choices for the (1 + (λ, λ)) genetic algorithm,” Algorithmica, vol. 80,
no. 5, pp. 1658–1709, 2018.

[21] D. Antipov and B. Doerr, “Runtime analysis of a heavy-tailed (1 +
(λ, λ)) genetic algorithm on jump functions,” in Parallel Problem
Solving from Nature – PPSN XVI, ser. Lecture Notes in Computer
Science, 2020, no. 12270, pp. 545–559.

[22] B. Doerr, H. P. Le, R. Makhmara, and T. D. Nguyen, “Fast genetic
algorithms,” in Proceedings of Genetic and Evolutionary Computation
Conference, 2017, pp. 777–784.

[23] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1)
evolutionary algorithm,” Theoretical Computer Science, vol. 276, no.
1-2, pp. 51–81, 2002.

[24] E. Carvalho Pinto and C. Doerr. (2018) Towards a more practice-aware
runtime analysis of evolutionary algorithms. [Online]. Available:
https://arxiv.org/abs/1812.00493

[25] ——, “A simple proof for the usefulness of crossover in black-box
optimization,” in Parallel Problem Solving from Nature – PPSN XV,
Vol. 2, ser. Lecture Notes in Computer Science, 2018, no. 11102, pp.
29–41.

[26] J. Rapin and O. Teytaud. (2018) Nevergrad - A gradient-
free optimization platform. [Online]. Available: https://GitHub.com/
FacebookResearch/Nevergrad

[27] D. Corus, P. S. Oliveto, and D. Yazdani, “Fast immune system-inspired
hypermutation operators for combinatorial optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 25, no. 5, pp. 956–970, 2021.

[28] S. Khot, “On the power of unique 2-prover 1-round games,” in Pro-
ceedings of the thirty-fourth annual ACM symposium on Theory of
computing, 2002, pp. 767–775.

[29] P. S. Oliveto, J. He, and X. Yao, “Analysis of the (1+1)-EA for finding
approximate solutions to vertex cover problems,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 1006–1029, 2009.

[30] J. He, X. Yao, and J. Li, “A comparative study of three evolutionary
algorithms incorporating different amounts of domain knowledge for
node covering problem,” IEEE Transactions on Systems, Man and
Cybernetics Part C, vol. 35, no. 2, pp. 266–271, 2005.

[31] P. S. Oliveto, J. He, and X. Yao, “Analysis of population-based evolu-
tionary algorithms for the vertex cover problem,” in IEEE Congress on
Evolutionary Computation, 2008, pp. 1563–1570.

[32] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt, “Ap-
proximating covering problems by randomized search heuristics using
multi-objective models,” Evolutionary Computation, vol. 18, no. 4, pp.
617–633, 2010.

[33] M. Pourhassan, F. Shi, and F. Neumann, “Parameterized analysis of
multiobjective evolutionary algorithms and the weighted vertex cover
problem,” Evolutionary Computation, vol. 27, no. 4, pp. 559–575, 2019.

[34] M. Pourhassan, W. Gao, and F. Neumann, “Maintaining 2-
approximations for the dynamic vertex cover problem using evolutionary
algorithms,” in Proceedings of Genetic and Evolutionary Computation
Conference, 2015, pp. 903–910.

[35] M. Pourhassan, T. Friedrich, and F. Neumann, “On the use of the
dual formulation for minimum weighted vertex cover in evolutionary
algorithms,” in Foundation of Genetic Algorithms, 2017, pp. 37–44.

[36] S. Kratsch and F. Neumann, “Fixed-parameter evolutionary algorithms
and the vertex cover problem,” Algorithmica, vol. 65, no. 4, pp. 754–771,
2013.

[37] B. Goldman and W. Punch, “Parameter-less population pyramid,” in
Proceedings of Genetic and Evolutionary Computation Conference,
2014, pp. 785–792.

[38] A. Gandomi and B. Goldman, “Parameter-less population pyramid
for large-scale tower optimization,” Expert Systems with Applications,
vol. 96, pp. 175–184, 2018.

[39] M. Buzdalov and B. Doerr, “Runtime analysis of the (1+(λ, λ)) genetic
algorithm on random satisfiable 3-CNF formulas,” in Proceedings of
Genetic and Evolutionary Computation Conference, 2017, pp. 1343–
1350.

[40] D. Antipov, M. Buzdalov, and B. Doerr, “Fast mutation in crossover-
based algorithms,” in Proceedings of Genetic and Evolutionary Compu-
tation Conference. ACM, 2020, pp. 1268–1276.

[41] ——, “Lazy parameter tuning and control: choosing all parameters
randomly from a power-law distribution,” in Proceedings of the Genetic
and Evolutionary Computation Conference, 2021, pp. 1115–1123.

[42] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[43] B. Doerr, D. Johannsen, and C. Winzen, “Multiplicative drift analysis,”
Algorithmica, vol. 64, no. 4, pp. 673–697, 2012.

[44] T. Kötzing and M. Krejca, “First-hitting times under drift,” Theoretical
Computer Science, vol. 796, pp. 51–69, 2019.

[45] D. Antipov and B. Doerr, “Precise runtime analysis for plateaus,” in
Parallel Problem Solving from Nature – PPSN XV, ser. Lecture Notes
in Computer Science, 2018, no. 11102, pp. 117–128.

