45,329 research outputs found

    Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings

    Full text link
    Constraint programming is a paradigm wherein relations between variables are stated in the form of constraints. Many real life problems come from uncertain and dynamic environments, where the initial constraints and domains may change during its execution. Thus, the solution found for the problem may become invalid. The search forrobustsolutions for constraint satisfaction problems (CSPs) has become an important issue in the ¿eld of constraint programming. In some cases, there exists knowledge about the uncertain and dynamic environment. In other cases, this information is unknown or hard to obtain. In this paper, we consider CSPs with discrete and ordered domains where changes only involve restrictions or expansions of domains or constraints. To this end, we model CSPs as weighted CSPs (WCSPs) by assigning weights to each valid tuple of the problem constraints and domains. The weight of each valid tuple is based on its distance from the borders of the space of valid tuples in the corresponding constraint/domain. This distance is estimated by a new concept introduced in this paper: coverings. Thus, the best solution for the modeled WCSP can be considered as a most robust solution for the original CSP according to these assumptionsThis work has been partially supported by the research projects TIN2010-20976-C02-01 (Min. de Ciencia e Innovacion, Spain) and P19/08 (Min. de Fomento, Spain-FEDER), and the fellowship program FPU.Climent Aunés, LI.; Wallace, RJ.; Salido Gregorio, MA.; Barber Sanchís, F. (2013). Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings. Artificial Intelligence Review. 1-26. https://doi.org/10.1007/s10462-013-9420-0S126Climent L, Salido M, Barber F (2011) Reformulating dynamic linear constraint satisfaction problems as weighted csps for searching robust solutions. In: Ninth symposium of abstraction, reformulation, and approximation (SARA-11), pp 34–41Dechter R, Dechter A (1988) Belief maintenance in dynamic constraint networks. In: Proceedings of the 7th national conference on, artificial intelligence (AAAI-88), pp 37–42Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell 49(1):61–95Fargier H, Lang J (1993) Uncertainty in constraint satisfaction problems: a probabilistic approach. In: Proceedings of the symbolic and quantitative approaches to reasoning and uncertainty (EC-SQARU-93), pp 97–104Fargier H, Lang J, Schiex T (1996) Mixed constraint satisfaction: a framework for decision problems under incomplete knowledge. In: Proceedings of the 13th national conference on, artificial intelligence, pp 175–180Fowler D, Brown K (2000) Branching constraint satisfaction problems for solutions robust under likely changes. In: Proceedings of the international conference on principles and practice of constraint programming (CP-2000), pp 500–504Goles E, Martínez S (1990) Neural and automata networks: dynamical behavior and applications. Kluwer Academic Publishers, DordrechtHays W (1973) Statistics for the social sciences, vol 410, 2nd edn. Holt, Rinehart and Winston, New YorkHebrard E (2006) Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South WalesHerrmann H, Schneider C, Moreira A, Andrade Jr J, Havlin S (2011) Onion-like network topology enhances robustness against malicious attacks. J Stat Mech Theory Exp 2011(1):P01,027Larrosa J, Schiex T (2004) Solving weighted CSP by maintaining arc consistency. Artif Intell 159:1–26Larrosa J, Meseguer P, Schiex T (1999) Maintaining reversible DAC for Max-CSP. J Artif Intell 107(1):149–163Mackworth A (1977) On reading sketch maps. In: Proceedings of IJCAI’77, pp 598–606Sam J (1995) Constraint consistency techniques for continuous domains. These de doctorat, École polytechnique fédérale de LausanneSchiex T, Fargier H, Verfaillie G (1995) Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the 14th international joint conference on, artificial intelligence (IJCAI-95), pp 631–637Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285Verfaillie G, Jussien N (2005) Constraint solving in uncertain and dynamic environments: a survey. Constraints 10(3):253–281Wallace R, Freuder E (1998) Stable solutions for dynamic constraint satisfaction problems. In: Proceedings of the 4th international conference on principles and practice of constraint programming (CP-98), pp 447–461Wallace RJ, Grimes D (2010) Problem-structure versus solution-based methods for solving dynamic constraint satisfaction problems. In: Proceedings of the 22nd international conference on tools with artificial intelligence (ICTAI-10), IEEEWalsh T (2002) Stochastic constraint programming. In: Proceedings of the 15th European conference on, artificial intelligence (ECAI-02), pp 111–115William F (2006) Topology and its applications. Wiley, New YorkWiner B (1971) Statistical principles in experimental design, 2nd edn. McGraw-Hill, New YorkYorke-Smith N, Gervet C (2009) Certainty closure: reliable constraint reasoning with incomplete or erroneous data. J ACM Trans Comput Log (TOCL) 10(1):

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Uncertainty in Soft Temporal Constraint Problems:A General Framework and Controllability Algorithms forThe Fuzzy Case

    Full text link
    In real-life temporal scenarios, uncertainty and preferences are often essential and coexisting aspects. We present a formalism where quantitative temporal constraints with both preferences and uncertainty can be defined. We show how three classical notions of controllability (that is, strong, weak, and dynamic), which have been developed for uncertain temporal problems, can be generalized to handle preferences as well. After defining this general framework, we focus on problems where preferences follow the fuzzy approach, and with properties that assure tractability. For such problems, we propose algorithms to check the presence of the controllability properties. In particular, we show that in such a setting dealing simultaneously with preferences and uncertainty does not increase the complexity of controllability testing. We also develop a dynamic execution algorithm, of polynomial complexity, that produces temporal plans under uncertainty that are optimal with respect to fuzzy preferences

    Robust Temporal Logic Model Predictive Control

    Full text link
    Control synthesis from temporal logic specifications has gained popularity in recent years. In this paper, we use a model predictive approach to control discrete time linear systems with additive bounded disturbances subject to constraints given as formulas of signal temporal logic (STL). We introduce a (conservative) computationally efficient framework to synthesize control strategies based on mixed integer programs. The designed controllers satisfy the temporal logic requirements, are robust to all possible realizations of the disturbances, and optimal with respect to a cost function. In case the temporal logic constraint is infeasible, the controller satisfies a relaxed, minimally violating constraint. An illustrative case study is included.Comment: This work has been accepted to appear in the proceedings of 53rd Annual Allerton Conference on Communication, Control and Computing, Urbana-Champaign, IL (2015

    Flow Logic

    Get PDF
    Flow networks have attracted a lot of research in computer science. Indeed, many questions in numerous application areas can be reduced to questions about flow networks. Many of these applications would benefit from a framework in which one can formally reason about properties of flow networks that go beyond their maximal flow. We introduce Flow Logics: modal logics that treat flow functions as explicit first-order objects and enable the specification of rich properties of flow networks. The syntax of our logic BFL* (Branching Flow Logic) is similar to the syntax of the temporal logic CTL*, except that atomic assertions may be flow propositions, like >γ> \gamma or ≥γ\geq \gamma, for γ∈N\gamma \in \mathbb{N}, which refer to the value of the flow in a vertex, and that first-order quantification can be applied both to paths and to flow functions. We present an exhaustive study of the theoretical and practical aspects of BFL*, as well as extensions and fragments of it. Our extensions include flow quantifications that range over non-integral flow functions or over maximal flow functions, path quantification that ranges over paths along which non-zero flow travels, past operators, and first-order quantification of flow values. We focus on the model-checking problem and show that it is PSPACE-complete, as it is for CTL*. Handling of flow quantifiers, however, increases the complexity in terms of the network to PNP{\rm P}^{\rm NP}, even for the LFL and BFL fragments, which are the flow-counterparts of LTL and CTL. We are still able to point to a useful fragment of BFL* for which the model-checking problem can be solved in polynomial time. Finally, we introduce and study the query-checking problem for BFL*, where under-specified BFL* formulas are used for network exploration
    • …
    corecore