7,125 research outputs found

    State space c-reductions for concurrent systems in rewriting logic

    Get PDF
    We present c-reductions, a state space reduction technique. The rough idea is to exploit some equivalence relation on states (possibly capturing system regularities) that preserves behavioral properties, and explore the induced quotient system. This is done by means of a canonizer function, which maps each state into a (non necessarily unique) canonical representative of its equivalence class. The approach exploits the expressiveness of rewriting logic and its realization in Maude to enjoy several advantages over similar approaches: exibility and simplicity in the definition of the reductions (supporting not only traditional symmetry reductions, but also name reuse and name abstraction); reasoning support for checking and proving correctness of the reductions; and automatization of the reduction infrastructure via Maude's meta-programming features. The approach has been validated over a set of representative case studies, exhibiting comparable results with respect to other tools

    Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms

    Full text link
    We introduce Meta-F*, a tactics and metaprogramming framework for the F* program verifier. The main novelty of Meta-F* is allowing the use of tactics and metaprogramming to discharge assertions not solvable by SMT, or to just simplify them into well-behaved SMT fragments. Plus, Meta-F* can be used to generate verified code automatically. Meta-F* is implemented as an F* effect, which, given the powerful effect system of F*, heavily increases code reuse and even enables the lightweight verification of metaprograms. Metaprograms can be either interpreted, or compiled to efficient native code that can be dynamically loaded into the F* type-checker and can interoperate with interpreted code. Evaluation on realistic case studies shows that Meta-F* provides substantial gains in proof development, efficiency, and robustness.Comment: Full version of ESOP'19 pape

    Hochschild (co)homology of the Dunkl operator quantization of Z2\Z_2-singularity

    Full text link
    We study Hochschild (co)homology groups of the Dunkl operator quantization of Z2\Z_2-singularity constructed by Halbout and Tang. Further, we study traces on this algebra and prove a local algebraic index formula.Comment: 26 pages. Comments and suggestions welcome. Some typos and other minor mistakes correcte

    On the Verified-by-Construction Approach

    No full text

    A formally verified proof of the prime number theorem

    Full text link
    The prime number theorem, established by Hadamard and de la Vall'ee Poussin independently in 1896, asserts that the density of primes in the positive integers is asymptotic to 1 / ln x. Whereas their proofs made serious use of the methods of complex analysis, elementary proofs were provided by Selberg and Erd"os in 1948. We describe a formally verified version of Selberg's proof, obtained using the Isabelle proof assistant.Comment: 23 page
    corecore