9 research outputs found

    Equitable partition of graphs into induced forests

    Full text link
    An equitable partition of a graph GG is a partition of the vertex-set of GG such that the sizes of any two parts differ by at most one. We show that every graph with an acyclic coloring with at most kk colors can be equitably partitioned into k−1k-1 induced forests. We also prove that for any integers d≥1d\ge 1 and k≥3d−1k\ge 3^{d-1}, any dd-degenerate graph can be equitably partitioned into kk induced forests. Each of these results implies the existence of a constant cc such that for any k≥ck \ge c, any planar graph has an equitable partition into kk induced forests. This was conjectured by Wu, Zhang, and Li in 2013.Comment: 4 pages, final versio

    Equitable partition of planar graphs

    Full text link
    An equitable kk-partition of a graph GG is a collection of induced subgraphs (G[V1],G[V2],…,G[Vk])(G[V_1],G[V_2],\ldots,G[V_k]) of GG such that (V1,V2,…,Vk)(V_1,V_2,\ldots,V_k) is a partition of V(G)V(G) and −1≤∣Vi∣−∣Vj∣≤1-1\le |V_i|-|V_j|\le 1 for all 1≤i<j≤k1\le i<j\le k. We prove that every planar graph admits an equitable 22-partition into 33-degenerate graphs, an equitable 33-partition into 22-degenerate graphs, and an equitable 33-partition into two forests and one graph.Comment: 12 pages; revised; accepted to Discrete Mat

    Equitable colorings of Kronecker products of graphs

    Get PDF
    AbstractFor a positive integer k, a graph G is equitably k-colorable if there is a mapping f:V(G)→{1,2,…,k} such that f(x)≠f(y) whenever xy∈E(G) and ||f−1(i)|−|f−1(j)||≤1 for 1≤i<j≤k. The equitable chromatic number of a graph G, denoted by χ=(G), is the minimum k such that G is equitably k-colorable. The equitable chromatic threshold of a graph G, denoted by χ=∗(G), is the minimum t such that G is equitably k-colorable for k≥t. The current paper studies equitable chromatic numbers of Kronecker products of graphs. In particular, we give exact values or upper bounds on χ=(G×H) and χ=∗(G×H) when G and H are complete graphs, bipartite graphs, paths or cycles

    Reconfiguring Graph Colorings

    Get PDF
    Graph coloring has been studied for a long time and continues to receive interest within the research community \cite{kubale2004graph}. It has applications in scheduling \cite{daniel2004graph}, timetables, and compiler register allocation \cite{lewis2015guide}. The most popular variant of graph coloring, k-coloring, can be thought of as an assignment of kk colors to the vertices of a graph such that adjacent vertices are assigned different colors. Reconfiguration problems, typically defined on the solution space of search problems, broadly ask whether one solution can be transformed to another solution using step-by-step transformations, when constrained to one or more specific transformation steps \cite{van2013complexity}. One well-studied reconfiguration problem is the problem of deciding whether one k-coloring can be transformed to another k-coloring by changing the color of one vertex at a time, while always maintaining a k-coloring at each step. We consider two variants of graph coloring: acyclic coloring and equitable coloring, and their corresponding reconfiguration problems. A k-acylic coloring is a k-coloring where there are more than two colors used by the vertices of each cycle, and a k-equitable coloring is a k-coloring such that each color class, which is defined as the set of all vertices with a particular color, is nearly the same size as all others. We show that reconfiguration of acyclic colorings is PSPACE-hard, and that for non-bipartite graphs with chromatic number 3 there exist two k-acylic colorings fsf_s and fef_e such that there is no sequence of transformations that can transform fsf_s to fef_e. We also consider the problem of whether two k-acylic colorings can be transformed to each other in at most â„“\ell steps, and show that it is in XP, which is the class of algorithms that run in time O(nf(k))O(n^{f(k)}) for some computable function ff and parameter kk, where in this case the parameter is defined to be the length of the reconfiguration sequence plus the length of the longest induced cycle. We also show that the reconfiguration of equitable colorings is PSPACE-hard and W[1]-hard with respect to the number of vertices with the same color. We give polynomial-time algorithms for Reconfiguration of Equitable Colorings when the number of colors used is two and also for paths when the number of colors used is three
    corecore