64,279 research outputs found

    A superlinear bound on the number of perfect matchings in cubic bridgeless graphs

    Get PDF
    Lovasz and Plummer conjectured in the 1970's that cubic bridgeless graphs have exponentially many perfect matchings. This conjecture has been verified for bipartite graphs by Voorhoeve in 1979, and for planar graphs by Chudnovsky and Seymour in 2008, but in general only linear bounds are known. In this paper, we provide the first superlinear bound in the general case.Comment: 54 pages v2: a short (missing) proof of Lemma 10 was adde

    Bitangents of tropical plane quartic curves

    Full text link
    We study smooth tropical plane quartic curves and show that they satisfy certain properties analogous to (but also different from) smooth plane quartics in algebraic geometry. For example, we show that every such curve admits either infinitely many or exactly 7 bitangent lines. We also prove that a smooth tropical plane quartic curve cannot be hyperelliptic.Comment: 13 pages, 9 figures. Minor revisions; accepted for publication in Mathematische Zeitschrif

    A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem

    Full text link
    The clustered planarity problem (c-planarity) asks whether a hierarchically clustered graph admits a planar drawing such that the clusters can be nicely represented by regions. We introduce the cd-tree data structure and give a new characterization of c-planarity. It leads to efficient algorithms for c-planarity testing in the following cases. (i) Every cluster and every co-cluster (complement of a cluster) has at most two connected components. (ii) Every cluster has at most five outgoing edges. Moreover, the cd-tree reveals interesting connections between c-planarity and planarity with constraints on the order of edges around vertices. On one hand, this gives rise to a bunch of new open problems related to c-planarity, on the other hand it provides a new perspective on previous results.Comment: 17 pages, 2 figure

    Decycling a graph by the removal of a matching: new algorithmic and structural aspects in some classes of graphs

    Full text link
    A graph GG is {\em matching-decyclable} if it has a matching MM such that GMG-M is acyclic. Deciding whether GG is matching-decyclable is an NP-complete problem even if GG is 2-connected, planar, and subcubic. In this work we present results on matching-decyclability in the following classes: Hamiltonian subcubic graphs, chordal graphs, and distance-hereditary graphs. In Hamiltonian subcubic graphs we show that deciding matching-decyclability is NP-complete even if there are exactly two vertices of degree two. For chordal and distance-hereditary graphs, we present characterizations of matching-decyclability that lead to O(n)O(n)-time recognition algorithms

    Passages in Graphs

    Full text link
    Directed graphs can be partitioned in so-called passages. A passage P is a set of edges such that any two edges sharing the same initial vertex or sharing the same terminal vertex are both inside PP or are both outside of P. Passages were first identified in the context of process mining where they are used to successfully decompose process discovery and conformance checking problems. In this article, we examine the properties of passages. We will show that passages are closed under set operators such as union, intersection and difference. Moreover, any passage is composed of so-called minimal passages. These properties can be exploited when decomposing graph-based analysis and computation problems.Comment: 8 page
    corecore