167 research outputs found

    Intelligent Escape of Robotic Systems: A Survey of Methodologies, Applications, and Challenges

    Full text link
    Intelligent escape is an interdisciplinary field that employs artificial intelligence (AI) techniques to enable robots with the capacity to intelligently react to potential dangers in dynamic, intricate, and unpredictable scenarios. As the emphasis on safety becomes increasingly paramount and advancements in robotic technologies continue to advance, a wide range of intelligent escape methodologies has been developed in recent years. This paper presents a comprehensive survey of state-of-the-art research work on intelligent escape of robotic systems. Four main methods of intelligent escape are reviewed, including planning-based methodologies, partitioning-based methodologies, learning-based methodologies, and bio-inspired methodologies. The strengths and limitations of existing methods are summarized. In addition, potential applications of intelligent escape are discussed in various domains, such as search and rescue, evacuation, military security, and healthcare. In an effort to develop new approaches to intelligent escape, this survey identifies current research challenges and provides insights into future research trends in intelligent escape.Comment: This paper is accepted by Journal of Intelligent and Robotic System

    Learning Multi-Pursuit Evasion for Safe Targeted Navigation of Drones

    Full text link
    Safe navigation of drones in the presence of adversarial physical attacks from multiple pursuers is a challenging task. This paper proposes a novel approach, asynchronous multi-stage deep reinforcement learning (AMS-DRL), to train adversarial neural networks that can learn from the actions of multiple evolved pursuers and adapt quickly to their behavior, enabling the drone to avoid attacks and reach its target. Specifically, AMS-DRL evolves adversarial agents in a pursuit-evasion game where the pursuers and the evader are asynchronously trained in a bipartite graph way during multiple stages. Our approach guarantees convergence by ensuring Nash equilibrium among agents from the game-theory analysis. We evaluate our method in extensive simulations and show that it outperforms baselines with higher navigation success rates. We also analyze how parameters such as the relative maximum speed affect navigation performance. Furthermore, we have conducted physical experiments and validated the effectiveness of the trained policies in real-time flights. A success rate heatmap is introduced to elucidate how spatial geometry influences navigation outcomes. Project website: https://github.com/NTU-ICG/AMS-DRL-for-Pursuit-Evasion.Comment: Accepted by IEEE Transactions on Artificial Intelligenc

    Hierarchical Multi-Agent Reinforcement Learning for Air Combat Maneuvering

    Full text link
    The application of artificial intelligence to simulate air-to-air combat scenarios is attracting increasing attention. To date the high-dimensional state and action spaces, the high complexity of situation information (such as imperfect and filtered information, stochasticity, incomplete knowledge about mission targets) and the nonlinear flight dynamics pose significant challenges for accurate air combat decision-making. These challenges are exacerbated when multiple heterogeneous agents are involved. We propose a hierarchical multi-agent reinforcement learning framework for air-to-air combat with multiple heterogeneous agents. In our framework, the decision-making process is divided into two stages of abstraction, where heterogeneous low-level policies control the action of individual units, and a high-level commander policy issues macro commands given the overall mission targets. Low-level policies are trained for accurate unit combat control. Their training is organized in a learning curriculum with increasingly complex training scenarios and league-based self-play. The commander policy is trained on mission targets given pre-trained low-level policies. The empirical validation advocates the advantages of our design choices.Comment: 22nd International Conference on Machine Learning and Applications (ICMLA 23

    On the role and opportunities in teamwork design for advanced multi-robot search systems

    Get PDF
    Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges

    Multi-Agent Reinforcement Learning for the Low-Level Control of a Quadrotor UAV

    Full text link
    This paper presents multi-agent reinforcement learning frameworks for the low-level control of a quadrotor UAV. While single-agent reinforcement learning has been successfully applied to quadrotors, training a single monolithic network is often data-intensive and time-consuming. To address this, we decompose the quadrotor dynamics into the translational dynamics and the yawing dynamics, and assign a reinforcement learning agent to each part for efficient training and performance improvements. The proposed multi-agent framework for quadrotor low-level control that leverages the underlying structures of the quadrotor dynamics is a unique contribution. Further, we introduce regularization terms to mitigate steady-state errors and to avoid aggressive control inputs. Through benchmark studies with sim-to-sim transfer, it is illustrated that the proposed multi-agent reinforcement learning substantially improves the convergence rate of the training and the stability of the controlled dynamics.Comment: 8 pages, 6 figures, 3 table

    Vision-based Learning for Drones: A Survey

    Full text link
    Drones as advanced cyber-physical systems are undergoing a transformative shift with the advent of vision-based learning, a field that is rapidly gaining prominence due to its profound impact on drone autonomy and functionality. Different from existing task-specific surveys, this review offers a comprehensive overview of vision-based learning in drones, emphasizing its pivotal role in enhancing their operational capabilities under various scenarios. We start by elucidating the fundamental principles of vision-based learning, highlighting how it significantly improves drones' visual perception and decision-making processes. We then categorize vision-based control methods into indirect, semi-direct, and end-to-end approaches from the perception-control perspective. We further explore various applications of vision-based drones with learning capabilities, ranging from single-agent systems to more complex multi-agent and heterogeneous system scenarios, and underscore the challenges and innovations characterizing each area. Finally, we explore open questions and potential solutions, paving the way for ongoing research and development in this dynamic and rapidly evolving field. With growing large language models (LLMs) and embodied intelligence, vision-based learning for drones provides a promising but challenging road towards artificial general intelligence (AGI) in 3D physical world
    corecore