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Kein Operationsplan reicht mit einiger Sicherheit

über das erste Zusammentreffen mit der feindlichen Hauptmacht hinaus.

(No plan of operation is sure to withstand

initial contact with the adversary’s primary force.)

– Helmuth Karl Bernhard Graf von Moltke, Über Strategie [1]
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SUMMARY

While swarms of UAVs have received much attention in the last few years, adversarial swarms (i.e.,

competitive, swarm-vs.-swarm games) have been less well studied. In this dissertation, I investigate

the factors influential in team-vs.-team UAV aerial combat scenarios, elucidating the impacts of

force concentration and opponent spread in the engagement space. Specifically, this dissertation

makes the following contributions:

1. Tactical Analysis: Identifies conditions under which either explicitly-coordinating tactics or

decentralized, greedy tactics are superior in engagements as small as 2-vs.-2 and as large as

10-vs.-10, and examines how these patterns change with the quality of the teams’ weapons;

2. Coordinating Tactics: Introduces and demonstrates a deep-reinforcement-learning frame-

work that equips agents to learn to use their own and their teammates’ situational context

to decide which pre-scripted tactics to employ in what situations, and which teammates, if

any, to coordinate with throughout the engagement; the efficacy of agents using the neural

network trained within this framework outperform baseline tactics in engagements against

teams of agents employing baseline tactics in N-vs.-N engagements for N as small as two

and as large as 64; and

3. Bio-Inspired Coordination: Discovers through Monte-Carlo agent-based simulations the

importance of prioritizing the team’s force concentration against the most threatening oppo-

nent agents, but also of preserving some resources by deploying a smaller defense force and

defending against lower-penalty threats in addition to high-priority threats to maximize the

remaining fuel within the defending team’s fuel reservoir.

xviii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) are growing more popular and more available in the consumer

market. With this consumer interest, there is likewise growing attention in the defense and research

communities. A number of groups around the world are displaying ever-growing interest in their

abilities to construct, maintain, and deploy large swarms of UAVs [2, 3]. With this international

increase in interest, and with financial and logistical obstacles to obtaining and deploying UAVs

decreasing, there is increasing concern of the threat of UAVs operated by nefarious or negligent

actors [4–8]. Indeed, as recently as May 2021, Israel employed a surface-to-air missile to shoot

down a single suspected-hostile UAV [9]; swarms of hostile UAVs are likely to become even more

serious threats in the coming years. Programs such as DARPA’s AlphaDogfight [10] and Air Com-

bat Evolution (ACE) [11] demonstrate that the United States is working to prepare for such an

eventuality. AlphaDogfight explored 1-vs.-1 aerial combat between UAVs, and ACE seeks to build

upon AlphaDogfight’s foundation in both practical application and scaling up to application in

larger engagements. As I demonstrate in Chapter 2, however, the perspectives and approaches with

respect to small (1-vs.-1, 2-vs.-2, etc.) engagements and with respect to larger engagements in the

literature are very different, and the literature that explores the effectiveness of tactical behaviors

as engagement sizes scale from small to large is scarce. To my knowledge, as of the time of writing

of this dissertation, no literature apart from my own work (Chapter 4 and its predecessor [12]) ad-

dresses leveraging Reinforcement Learning (RL) in the selection of aerial combat tactics in small

and large engagements. To work towards filling this gap in the literature and human understanding,

this dissertation explores the scaling of engagements from small to large, examining what fac-

torrs influence engagement outcomes of various sizes. I present a bio-inspired close-in site defense
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scheme utilizing multirotors, and analyze within-visual-range (WVR) fixed-wing aerial combat

tactics for the interception of evaders further away from their target. I also introduce and demon-

strate a reinforcement learning architecture that equips a team of homogeneous fixed-wing UAVs

to switch between aerial combat tactical doctrines mid-engagement for greater combat effective-

ness in engagements of a large variety of sizes than the individual tactical doctrines alone. In these

contexts, I elucidate the key components of leveraging tactical advantage and distribution of force

concentration during an engagement to disable the opponent team and preserve the protagonist

team, and discuss how the protagonist team’s performance changes as team sizes grow.

1.2 Research Overview

In this dissertation, I present studies of tactics and coordination factors in engagements between

UAVs leveraging human-pilot-inspired aerial combat tactics. I then introduce and demonstrate an

algorithm for training agents to use their own and their teammates’ situational context to make

appropriate tactical and teamworking decisions to achieve tactical advantage within aerial combat

engagements. I then conclude by motivating these observations on force concentration and force

distribution in swarm-vs.-swarm engagements with a demonstration of how they apply in a differ-

ent scenario—in a defense scenario between heterogeneous teams of multirotors. The fixed-wing

and multirotor scenarios may be seen as two components of a comprehensive site defense scheme,

where fixed-wing UAVs are deployed to intercept as many opponent agents as possible before

the opponents can reach a targeted location, and multirotors are employed for close-in last-mile

defense of the targeted location to defeat any adversaries that evaded the fixed-wing intercept.

1.2.1 Summary of Contributions

The contributions presented in this work explore team-tactical approaches to swarm defense sce-

narios and UAV aerial combat. This body of work is towards the overall aim of comprehensive

site defense, with fixed-wing UAVs intercepting adversary agents far from the defended location

and multirotors executing close-in last-mile defense. Firstly, I investigate greedy and explicitly-
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coordinated tactical maneuvers inspired by tactical doctrine employed by human fighter pilots. I

demonstrate the dependence of tactics that require precise maneuvering with a teammate to aim on

the quality of their weapons and the availability of non-hostile space in the engagement, as well as

the resilience of the decentralized, greedy team’s abilities to differences in weapon quality and its

strength in dense regions of engagements. Next, I present and demonstrate an approach to train a

neural network that performs distributed, agent-centric evaluation of individual and teaming-based

tactics to determine the most tactically-effective scripted maneuver an agent can use at the current

moment. In doing so, these trained agents determine which, if any, teammate they should part-

ner with to execute the maneuver and how to maneuver when none of the pre-scripted tactics are

situationally appropriate. I then examine a bio-inspired defense scenario and draw conclusions re-

garding the corce concentration implications of how differences between the abilities of agents on a

heterogeneous team to identify and attack a heterogeneous team of enemies impact the scheduling

of different defender roles and fuel required for the defense scheme.

1.2.2 Detailed Overview

Tactical Analysis: What Affects Swarm-vs.-Swarm Engagements – Chapter 3 explores the effects

of opponent spread in engagements between teams of fixed-wing aircraft, where the aircraft must

maneuver precisely to successfully aim at their opponents [13]. These maneuvers are components

of aerial combat tactics inspired by tactics employed by human fighter pilots. My interest in en-

gagements that leverage these tactics is in how well the tactics’ effectiveness and ability to create

and exploit force concentration advantages changes as the size of the engagement changes, and

whether weapon quality has any impact on these relationships. As shown in the literature in Chap-

ter 2, most Basic Fighter Maneuvers (BFMs) and most of the pairwise tactics human fighter pilots

have employed historically are focused upon achieving a position relative to the opponent that

prevents the opponent from being able to fire at the protagonist team member(s), and that allows

one or more of the protagonist team members to have an unhindered firing opportunity against the

antagonist [14]. These tactics (with the exception of BFM, which are for single aircraft) primarily
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depend on two or more aircraft on the protagonist team maneuvering in a coordinated fashion.

Some tactics are effective with no explicit coordination or communication, while other explicitly-

coordinating tactics may perform best with explicit communication, e.g. to clarify which opponent

a pair of aircraft are targeting, or to establish when to begin a specific phase of a timing-depen-

dent multi-stage coordinated maneuver. Chapter 3 discusses the characteristics of two different

tactical behaviors—a fully decentralized, greedy tactic; and a tactical behavior that leverages ex-

plicit coordination to execute pairwise-coordinated maneuvers that target specific opponents. Of

particular interest are the conditions under which these two tactical behaviors are effective, as well

as how varying the ability of an aircraft’s fire to attrit an opponent changes the effectiveness of

these tactics.1 The maneuvers used by the explicitly-coordinating teams focus on achieving fir-

ing opportunities against one opponent at a time, highlighting again the importance of local force

concentration superiority within the overall engagement. In engagements of 2-vs.-1, 2-vs.-2, and

4-vs.-4, when against a team employing non-coordinating greedy aiming tactics, the coordinated

teams generally attrit more opponents than their team loses. In larger engagements, such as 10-

vs.-10, the decentralized, greedy tactical behavior is more effective under some weapon quality

conditions than its explicitly-coordinating counterpart. In those scenarios, the denser conditions

created by the larger teams in the same engagement zone greatly reduce the non-hostile space and

available maneuvering time the coordinated teams need to perform the maneuvers upon which

their aiming procedures rely, and thus, with a low-accuracy weapon, the explicitly-coordinating

teams perform more poorly than when they are equipped with accurate weapons. This trend is

especially apparent when comparing the explicitly-coordinating team’s performance in dense en-

gagements and with poor weapon quality to that of their decentralized counterparts, who have no

dependence upon complex maneuvers to aim. These experiments show that the teams using the

explicitly-coordinating maneuvers excel in low-density engagements, but the coordinated behav-

ior’s dependence on these aiming maneuvers is a liability in larger, denser engagements, where the

1“Attrit” means the act of causing a fighting force to experience attrition, generally in the sense of a specific agent
being removed from the active members of its fighting force; e.g. “agent A attrits agent B” means that agent A fires at
agent B, the shot connects, and agent B is removed from the engagement.
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number of aircraft in the engagement makes isolating opponents to obtain the non-hostile space

and maneuvering time needed to employ these explicitly-coordinating maneuvers to pick off indi-

vidual opponents difficult. The decentralized, greedy teams, in contrast, are less effective in small

engagements against teams using their same tactics or using the explicitly-coordinating tactics, but

their tactics’ invariance with respect to the proximity of agents other than their target allows them

to more easily overwhelm weapon-disadvantaged opponents in larger engagements with denser

conditions. These two very different tactical approaches to aerial combat engagements are both ef-

fective, but in different scenarios. Thus, in this dissertation, I equip agents to switch tactics during

an engagement based on what is happening around themselves and their teammates.

Learning To Leverage Tactics – Chapter 4 demonstrates a team tactic coordination algorithm that

directs the behaviors employed by the members of the protagonist team so that team members em-

ploy either greedy or explicitly-coordinating tactics when appropriate, and when neither option is

a tactically-favorable choice for a particular agent, makes intelligent maneuvering choices directly

by dictating the agent’s yaw rate. My hypothesis in Chapter 4 is that these agents, equipped with

the ability to learn to switch tactics based on their surroundings, will perform better (attrit more

opponents and keep more own-team agents alive) than teams employing the hand-crafted tactics of

Chapter 3. The work introduced above (Chapter 3) emphasizes the importance of achieving favor-

able force concentration against groups of opponent team members, as well as the importance of

leveraging the tactical behavior best suited to the current situation. In the literature (see Chapter 2),

the primary emphases of research regarding fixed-wing UAVs in aerial combat is split into works

that focus primarily on the actions of individual or small groups of agents and how those tactical

action choices have an impact on the overall engagement, and works that focus more on team-wide

strategies for engagements [14]. Chapter 4’s contribution enables a team to make decisions about

which tactic each team member should employ with respect to the local situational contexts of the

other members of the team, and when to coordinate explicitly with one of those teammates. Agents

trained using this algorithm are capable of outperforming teams that employ one of the baseline

hand-crafted tactics discussed in Chapter 3, despite only being trained against teams employing
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one of the baseline tactics. The learner agents are trained in relatively small engagements, yet per-

form increasingly well in N-vs.-N engagements even when N increases beyond the engagement

size in which the team was trained.

Bio-Inspired Coordination: Force Allocation Prioritization on a Heterogeneous Team – Approach-

ing the close-in defense problem, Chapter 5 demonstrates the effectiveness of leveraging force

concentration in a different setting than fixed-wing aerial combat, instead investigating its effec-

tiveness in a defense scenario between two heterogeneous teams of multirotors. Chapter 5 explores

the hypotheses that the ability for the guarding force to mainly encounter enemies one at a time

and to engage the most threatening opponents multiple times, combine to ultimately create advan-

tageous conditions for the protagonist team [15]. The bio-inspired simulation detailed in Chapter 5

is a defense scenario in which a heterogeneous swarm of multirotors counters a heterogeneous

force of attackers that approach the defended location one by one, and examine the some of the

mechanics of why this bio-inspired guarding structure is effective. In these experiments, two types

of defensive agents guard a High-Value Target (HVT), which is their team’s energy source, and

two types of adversary agents attempt to break through the guard ranks to reach the HVT to deduct

a type-specific amount of energy from it. To initialize each guard, a role-specific amount of energy

is deducted from the HVT energy store, with one guard role deducting more energy than the other.

The more expensive guards, which specialize in identifying the more-costly attackers, have the

benefit of being able to re-engage an escaped opponent agent; this capability gives them greater

fighting strength against their opponents2 providing the defenders countering the high-threat at-

tackers with local numerical superiority over the attackers that approach the defended location one

by one. The less-expensive guards, which specialize in identifying the cheaper attackers, cannot

re-engage escaped attackers, but the low penalty of the opponents against which they guard reduces

the impact of this limitation. The team guarding resources from these attackers generally maximize

2Lanchester’s Square Law [16–18] illustrates how the fighting strength of a force employing aimable weaponry
against its opponents is directly proportional to the difference between the squares of the force sizes. As is shown
in Section 5.5, concentration of force and the ability for the guards countering the high-threat attackers to re-engage
escaped adversaries are why the expensive guards are as effective as they are against the high-penalty attackers. Em-
ploying multiple of these expensive guards spreads the approaching attackers out across the guard force,
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the amount of resource remaining after all attackers have approached the defended location with

fewer guards than there are attackers in a given simulation, indicating that expecting and accepting

some loss of resources is more economical in terms of preserving the defended resource than using

the defended resource to create an impenetrably-large guard force.

1.3 Objectives and Contributions

In this work, I investigate the problem of developing coordination strategies for adversarial swarm-

vs.-swarm scenarios. Informed by my investigations into aerial combat tactics, I develop a novel

computational approach that, by leveraging the advantages of expert-defined tactics and the flexi-

bility of deep reinforcement learning, outperforms hand-crafted baseline tactics. Specifically, this

dissertation makes the following contributions:

1. Tactical Analysis: Identifies the conditions under which either explicitly-coordinating tac-

tics or decentralized, greedy tactics are tactically superior in engagements as small as 2-vs.-2

and as large as 64-vs.-64, and examines how these patterns change as the quality of a team’s

weapon changes [13];

2. Coordinating Tactics: Introduces and demonstrates a deep-RL framework that equips agents

to learn to use their own and their teammates’ situational context to make decisions about

which pre-scripted tactics to employ in what situations, and which teammates, if any, to co-

ordinate with throughout the engagement; the efficacy of agents using the neural network

trained within this framework outperform the baseline tactics introduced in Chapter 3 in en-

gagements against teams of agents employing such tactics in N-vs.-N engagements for N as

small as two and as large as 64; and

3. Bio-Inspired Coordination Discovers through Monte-Carlo agent-based simulations the

importance of prioritizing the team’s force concentration against the most threatening oppo-

nent agents, but also preserving some resources by deploying a smaller defense force and
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defending against lower-penalty threats in addition to high-priority threats to maximize the

remaining fuel within the defending team’s fuel reservoir [15].

1.4 Outline

I first examine related literature in Chapter 2, then explore the aforementioned implicitly- and ex-

plicitly-coordinating team tactics, the situations in which each is effective, and how weapon quality

affects their performance in Chapter 3. I then introduce and demonstrate the training and testing

of an RL scheme for switching tactics based on pairs of an agent’s situational context with the

situational contexts of its teammates in Chapter 4. I demonstrate the implications of advantageous

force concentration in a multirotor bio-inspired defense scenario in Chapter 5. Finally, I address

the limitations of these approaches and experiments and potential future work in Chapter 6, and

conclude in Chapter 7.
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CHAPTER 2

RELATED WORK

2.1 UAV Tactics

Aerial combat tactics for fixed-wing aircraft1 have been discussed extensively in the literature,

with much of aerial engagement research focused on small engagements (1-vs.-1, 2-vs.-1, or 2-

vs.-2). Works on small engagements typically examine how the maneuvering of the individual

agents involved in the engagement impacts the engagement outcome. Works pertaining to larger

engagements primarily focus on weapon-target assignment algorithms, cognitive architectures for

human-pilot-like decisionmaking, and high-level engagement analysis. I review these works and

elucidate the need for study in what properties of a tactical behavior make it capable of scaling

well between small and large engagements, and what role within-team coordination plays in en-

gagements of all sizes.

2.1.1 Small Engagements

The selection of literature pertaining to small aerial combat engagements is vast, but all center

around the crucial BFM tenet of achieving a position of advantage against one’s opponent where

one can fire at the opponent without risk of the opponent being able to return fire, and preventing

the opponent from achieving this same advantage against one’s own aircraft [14].

Popular methods for achieving this desired advantageous positioning include utilizing expert

systems [19–24], control laws for pursuit and/or evasion [25–30], differential-game-theoretical

1This dissertation primarily focuses on fixed-wing aircraft specifically due to their restricted motion. Rotorcraft
can change their yaw independent of their flight path, which, assuming a boresight-fixed weapon, allows them to aim
their fire at a moving opponent without difficulty. Conversely, fixed-wing aircraft using a boresight-fixed weapon must
maneuver carefully to aim their fire, and may do so more easily with assistance from teammates moving in a way
that entices opponent aircraft into predictable, tactically-disadvantageous locations. The discussions on coordinated
maneuvers in this document are centered on this assistance in achieving favorable positioning against opponents, hence
the focus on fixed-wing aircraft.
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approaches to analysis and tactical maneuvering in zero-sum 1-vs.-1 scenarios [24, 26, 27, 29, 31–

36], machine learning approaches [37–41], and hybrid approaches [42–54]. I expand on some of

these contributions below.

Differential Game Theory – Differential games generally consist of two players with known sys-

tem dynamics, both of whom make a sequence of decisions until some terminating condition is

reached (e.g. one player captures the other by coming within a specific range) [31]. Some differ-

ential games can be solved exactly, such as the Homicidal Chauffeur problem [31, 55, 56], or the

somewhat-more-complex Game of Two Identical Cars [31, 57–59]. In differential game theory,

“solved,” means that methods exist by which one can compute whether the pursuer will be able

to capture the evader—the solution to the “game of kind”— and, when capture is possible, how

quickly or to what degree the ultimate objective of one player or the other may be achieved—

the “game of degree”—assuming that both players select their optimal actions throughout the

game [31]. The majority of the aerial combat literature in this area formulates these differential

game scenarios as “zero-sum games,” meaning that results occurring during the game that are

good for one player are equally bad for its opponent, and vice-versa. Variations of some of these

and other scenarios have been used to analyze various 1-vs.-1 aerial combat scenarios in such a

way that the scenario can be solved [32, 34, 60–62], but the problem becomes more complex as

assumptions are dropped; for instance, solving 2D 1-vs.-1 scenarios with aircraft that can adjust

their speeds and turn radii during the game requires numerical solutions [34, 61].

Machine Learning – A number of machine learning approaches have also been used to approach

the problem of 1-vs.-1 aerial engagements [37–41]. In particular, McGrew [37] and McGrew, How,

Williams, and Roy [38] present work in structuring 1-vs.-1 aerial combat in the horizontal plane as

an Markov Decision Process (MDP), then use Approximate Dynamic Programming (ADP) to learn

the optimal policy against specific opponent policies. McGrew, himself a former fighter pilot [37],

discusses features that human pilots are attentive to during engagements, and employs ADP to

learn which of these features increase the performance of the learned aerial combat maneuvering
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policies the most [37, 38]. McGrew’s approach, however, and even the work of Ma, Xia, and Zhao

that extends it to deep learning [39], would face the curse of dimensionality if applied to larger

team sizes, as the features the presented algorithms depend upon during the training process are

measurements specifically between two aircraft—the protagonist and the opponent. The work pre-

sented in Chapter 4 simplifies the features from which the agents make decisions to an embedding

that is agnostic to the number of aircraft in the engagement, thus allowing the algorithm presented

in Chapter 4 to scale gracefully between small and large engagement sizes.

Hybrid Approaches – A particularly interesting approach to 1-vs.-1 and 2-vs.-1 engagement au-

tonomy is Dynamic Scripting (DS), which uses a genetic algorithm to evolve expert systems for

aerial combat [47–54]. These expert systems’ responses to decisions consist of pre-defined scripted

maneuvers the aircraft can execute, a somewhat similar concept to the work in Chapter 4, albeit

with a different decisionmaking algorithm and different pre-scripted maneuvers. An enhancement

of DS, Dynamic Scripting + Coordination (DS+C) [48], considers communication between air-

craft to be a part of each aircraft’s selected script-action, and received messages are added to an

aircraft’s state. By considering both messages and aircraft physical states in the decisionmaking

process, the aircraft develop associations between messages their partner sends and actions they

should take, causing the fittest systems to be capable of communicating effectively both within the

context of their own and their partner’s actions and with respect to the overall scenario. To my

knowledge, however, the DS+C approach has not been applied to engagements larger than 2-vs.-

2, and would face the curse of dimensionality if scaled to larger engagements, in contrast to the

approach demonstrated in Chapter 4.

2.1.2 Many-vs-Many

The primary components of team tactics addressed in the many-vs.-many aerial combat literature

are weapon-target assignment algorithms and cognitive architectures for creating teams of cooper-

ating agents.
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Operations Research: Weapon-Target Assignment – Weapon-target assignment has been addressed

extensively in the literature (e.g. [63–71]). More directly related to UAV aerial combat engage-

ments are the theses of Day and Gaertner [4, 72]. The UAVs in Gaertner’s work [72] collaborate

with their teammates by sharing positions of sensed enemies and allocating which team members

should attack which enemies. Similarly, Day investigates the differences between several central-

ized and decentralized task assignment algorithms in allocating UAV team members to enemy tar-

gets [4]. Unlike these approaches to whole-team assignment problems, the work in Chapter 3 ([13])

examines how specific hand-scripted tactics with their own decentralized target-selection logic em-

ployed by individuals or pairs of agents on a team affect the outcomes of engagements of sizes

between 2-vs.-1 and 10-vs.-10. Furthermore, the work presented in Chapter 4 shows how agents

who are trained to select which of the two tactics employed by entire teams in Chapter 3 ([13])

to leverage at a given moment based on the situational context of an agent and its teammates can

be more effective at attriting opponents and preserving own-team UAVs than are teams employing

one of either of the hand-scripted tactics alone.

Ernest, Cohen, et al. introduce and demonstrate Genetic Fuzzy Treess (GFTs)—trainable trees

of expert systems that make fuzzy decisions—and their application to controlling simulated aircraft

in air-vs-mixed-force engagements [73–75] and beyond visual range (BVR) air-to-air [76] engage-

ments. Once trained, the GFT aircraft act in a decentralized manner, coordinating with teammates

(when communication is possible) to allocate tasks and roles [75]. In contrast to my work, these

papers on GFTs do not discuss the tactics the aircraft learn to execute or the decisions they learn

to make in detail, instead focusing primarily upon the general learning mechanism. Moreover, this

GFT work on BVR aerial combat, while novel and interesting, is employed to tackle a different

problem than what I explore in this dissertation; WVR aerial combat with cannon weaponry re-

quires faster reaction time and more precise aim than is required for the BVR engagement scenarios

for which the GFTs in these papers are trained. As such, it is currently unknown how well GFTs

trained for WVR scenarios similar to those investigated in this document would perform.
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Cognitive Architectures – The literature covering tactical coordination for large-scale coopera-

tive-competitive engagements is largely focused on cognitive architectures that imitate the deci-

sionmaking of human pilots [77–83]. Tidhar et al. [78, 79] use the dMARS cognitive architecture

to model teams of pilots in many-vs.-many aerial engagements. The earlier of these papers [78]

describes a hierarchical role assignment arrangement similar to that described by Shaw [14] as be-

ing used by human pilots for role allocation; two individual aircraft partner together as the leader

and wingman of a section, two sections partner together in a similar fashion, and so on. The lead-

ers of sub-teams in this arrangement can choose to either directly control their subordinates or

permit them to act in a decentralized manner (autonomously, according to their role on the team).

The later paper [79] discusses an enhancement that allows for agents to be on multiple sub-teams

and to change team or sub-team membership mid-engagement if it seems advantageous to do so.

Similar approaches to dynamic team switching and engagement role allocation are presented in

the works of Laird, Jones, and Nielsen [80] and Tambe et al. [81–83]. Rather than focusing on

imitating the reasoning process of human fighter pilots, Chapter 4 focuses on training agents to

recognize, from their own situational context and the situational contexts of their teammates, when

specific pre-scripted known-good tactics are likely to be effective with respect to each teammate

and themselves, and if selecting the hand-scripted tactic requiring explicit teammate coordination,

with which teammate to coordinate. This loose partner-switching arrangement, while simpler than

the sub-team and role switching structures presented in the works discussed in this paragraph,

shows itself to be very effective in aerial combat against teams using one of either of the baseline

hand-scripted tactics alone. Additionally, while agents employing this learning framework require

the ability to train against a team of the opponents employing the tactics against which the pro-

tagonist team will be tested, the protagonist team can learn more specifically how to counter the

particular opponent tactics and strategy with the hand-scripted-tactic building blocks it has avail-

able, rather than using inflexible non-learning maneuvering and role-switching logic.

Multi-Agent Reinforcement Learning – Multi-agent reinforcement learning, and Actor-Critic meth-

ods in particular, have seen increasing interest in the literature in recent years [84–87]. Actor-Critic
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methods train one or more critic networks to assess the utility of states across the team while the

actor networks simultaneously learn from the critic network(s) what actions they should take in

each state. The critic network(s) can access more information than the actors’ networks can, and

so provide individualized, big-picture feedback to the actors during training. The actors then oper-

ate without their critics at test-time. One key algorithm of this kind, MADDPG [84], trains a unique

policy for each agent on a team, and provides the critics that train these agents with full access to

all of the other agents’ critics and action-selection distributions—including, for adversarial scenar-

ios, those of the adversary team. While MADDPG may handle large numbers of agents far more

gracefully than the 1-vs.-1 works discussed earlier, it unfortunately is not structured to account for

agent attrition. In Chapter 4, the learner agents only have access to opponent state information that

the agent can observe directly, not the internal decision information of the opponents. Additionally,

the inputs to the learning framework introduced in Chapter 4 are agnostic to team size, allowing for

agents to continue legeraging the network outputs for decisionmaking even in engagements larger

or smaller than those the agents experienced during training, as well as when team sizes change

mid-engagement. Training the policy network for the approach in Chapter 4 also does not require

the training or use of a critic, and, as it is trained via a policy gradient algorithm, its training setup

does not employ a replay buffer.

An additional multi-agent learning approach for cooperative-competitive scenarios is presented

in the 2018 work of Hoang et al. [88], which leverages the GDICE [89] algorithm for solving

MacDec-POMDPs. Hoang’s approach sets a team of learning agents against a team of adversary

agents that switch policies. The learner agents train specific countering policies against specific

adversary policies, then learn to recognize when an opponent has switched its policy, which dictates

when the protagonist agents switch to a different countering policy. The approach in Chapter 4 is

somewhat similar in that it learns when and where agents on the protagonist team should use

different behaviors, but is more modular in that it allows the protagonist team to leverage known-

good pre-existing behaviors.

Zhang et al. [90] leverage deep multiagent RL to train policy, critic, and target prediction net-
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works for a pursuit-evasion game between five multirotor pursuers and one evader of unknown mo-

tion model. Aside from the environment and team size differences between Zhang et al.’s game and

that of the engagements in the experiments presented in this dissertation, the primary differences

between Zhang et al.’s learning structure and that that I introduce in Chapter 4 are that (a) Zhang et

al. employ an actor-critic off-policy method to train actor and critic networks for each individual

agent, while the work in Chapter 4 employs a simple policy network employed by all agents on

the trained team and that is trained with an on-policy algorithm; and (b) while the actor and critic

networks of the agents in Zhang et al. can be constructed to handle any desired number of team

members, it does not appear that these networks in Zhang et al.’s work can scale to engagements

with different-sized teams than the size of the team with which the agents are trained, as the actor

and critic networks have exactly twice as many inputs as there are agents on the pursuer team. The

training framework presented in Chapter 4 may be used in engagements with different numbers of

agents than are in the engagements upon which the network is trained, and, as the dimensions of

the inputs to the network do not change regardless of how many agents are present on a team, the

network may continue to be used in an engagement even as agents are attrited. Additionally, the

agents in Zhang et al.’s paper cannot leverage pre-existing tactics in their coordination, and it is

not known how well agents trained with their method would perform against multiple evaders or

an aggressive opponent team, drawbacks that the work I present in Chapter 4 addresses.

Seraj et al. [91] frame multi-agent communication between heterogeneous agents in a wildfire

firefighting environment as a MAH-POMDP and develop a Graph Attention Network scheme to

learn facilitate effective inter-agent communication between the two types of robots in the swarm.

The two classes of robots have different sensors, state configurations, and can perform different ac-

tions, and this HetGAT-based communication learning framework produces a “translator” between

the two types of agents to help them effectively collaborate in the performances of their tasks. I ex-

amine heterogeneous teams in Chapter 5, but those agents do not communicate with one another or

learn to share information with one another in any way. Regarding inter-agent communication on a

team, MAGIC [92] also learns how to enable agents on a team to communicate effectively, albeit on
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homogeneous teams. In the work in Chapter 3 [13] and Chapter 4, the agents communicating and

coordinating with one another are homogeneous, but do not have complex communication require-

ments in their current form. The pairwise-coordinating tactic employed in Chapter 3 establishes

agent tactic pairings via a central authority (which is assumed to be capable of communicating

with all agents), and the agents themselves only communicate simple internal state messages with

their maneuver partner. More complex communication could be utilized in a version of the work

presented in Chapter 4 in communicating agent states between agents, but the simulation frame-

work currently stands as a proof-of-concept that learning from and making decisions based on pairs

of ego-centric agent states is fruitful and feasible; incorporating a more complex fully-decentral-

ized system into that learning and evaluation framework is a possible avenue of future work, but is

outside of the scope of this document.

Konan, Seraj, and Gombolay [93] present a method for employing a multi-agent RL policy gra-

dient method called InfoPG to solve MAF-Dec-POMDP-framed problems. The agents maximize

mutual information between agents working towards the team’s goal, and are able to quickly learn

how to act in cases where one of the agents acts unreliably. The training and testing framework I

present in Chapter 4 is a more strongly adversarial scenario, but the teams in the experiments pre-

sented in both Chapter 3 and Chapter 4 contain no agents that act traitorously towards their team

and do not attempt to explicitly discern the opponent or opponents’ policy or reasoning.

2.2 Additional Background: Lanchester’s Laws

Throughout this document, I reference the seminal work of Frederick Lanchester [16] and others

who expanded upon his work (e.g. [17, 18]) in discussions of tactical advantage. Lanchester’s Laws

model the fighting strength of two forces, red and blue, in terms of each force’s size at a given time

(R(t),B(t), respectively, or simplyR,B); as well as each force’s attrition-rate coefficient (kR, kB),

which approximates the rate at which one firer of the force denoted by the coefficient’s subscript

attrits members of the other team [17]. While I do not conduct rigorous Lanchestrian analysis of

the tactics described in this document, Lanchester’s Laws are helpful tools for clarifying how force
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concentration creates tactical advantage for portions of one team or the other in various scenarios.

For what Lanchester referred to as “ancient warfare,” in which the fighting forces utilize spears,

swords, and other one-to-one weapons, the ratio of the change in size of the blue force to the change

in size of the red force is approximately constant, and is defined as E, the exchange ratio, given

in Equation (2.1).2

dB
dt
dR
dt

= E. (2.1)

Lanchester’s Linear Law, Equation (2.2), comes from rearranging and integrating Equation (2.1)

[17, 18].

B0 −Bf = E (R0 −Rf ) (2.2)

B0 and R0 are the initial sizes of the blue and red force, respectively, and Bf and Rf are their final

sizes. For the linear law, if E = 1, the difference in fighting strength between the red and blue

forces is simply R−B [16]. Figure 2.1 demonstrates the linear law for E = 1 in a scenario where

the blue team starts with 100 agents and the red team starts with 75. After ten seconds, the blue

team has attrited the entire red team, but is left with 25 agents remaining—the blue team loses as

many own-team members as it attrits of the red team.

In so-called “modern warfare” scenarios, where fire may be aimed at opponents from a distance

and any member of one team may aim at any member of the opposing team, the ratio in the rates of

change of force sizes exhibits a different relationship [16]. The change in the size of the red team

over time is given in Equation (2.3), and the change in size of the blue team over time is shown

in Equation (2.4).

dR

dt
= −kBB, (2.3)

2See Chapter 2 of [17] and Section 4.2.2 of [18] for discussion on how kR and kB relate to E.
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100
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0
25

Figure 2.1: In this demonstration of Lanchester’s Linear Law [16, 94], the blue army contains 100
agents at time t = 0, and the red army starts with 75 agents. Both teams are equally effective at
attriting one another; i.e. E = 1.0. By the time that the blue team has attrited the entire red team,
the blue team’s remaining size is only 25 agents—both teams lose the same number of agents.

dB

dt
= −kRR (2.4)

Divide Equation (2.3) by Equation (2.4), then re-arrange terms and integrate to obtain Lanchester’s

Square Law, shown in Equation (2.5).

kB
(
B2

0 −B2
f

)
= kR

(
R2

0 −R2
f

)
(2.5)

That is, the fighting strengths of red and blue are equivalent when the square of each team’s

size multiplied by that team’s attrition coefficient is the same for both teams [16]. By this logic, if

both teams’ attrition coefficients are equal (kR = kB), then the team with the numerically-superior

force (e.g. R) has a higher fighting strength than its opponent, (B), not by R − B as in the linear

law case, but by R2−B2. This difference in fighting strength is demonstrated in Figure 2.2, where

the blue force starts with 100 agents and the red force with 75 agents, as in Figure 2.1. Both armies
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Figure 2.2: This plot demonstrates Lanchester’s Square Law [94]. As in Figure 2.1, the blue army
starts with 100 agents at time t = 0, and the red army begins with 75 agents. Both teams are equally
effective at attriting one another; in this case, kR = kB = 0.2. Due to the blue team’s square law
advantage, the blue team has reduced the size of the red team to 0 agents after less than 5 s, and the
blue team’s size at that point is 66 agents. Simply using aimable weaponry and having a numerical
advantage in this battle preserved 41 of the blue team’s agents compared to the comparable linear
law scenario shown in Figure 2.1.

have the same effectiveness, kB = kR = 0.2. Under the square law, by the time the blue force has

reduced the size of the red force to 0, the blue force contains 66 agents—far more than survived in

the blue force in the linear law example above.

To demonstrate the difference between the Linear Law and Square Law, if R = B and kR =

kB = 1, but the red team is broken up into two waves of sizes R1 and R2 that blue team engages

sequentially, does team B have any advantage? Under linear-law battle conditions, neither team

has an advantage, as B − (R1 +R2) = 0 [16]. If this is a square-law situation, however, blue has

a significant advantage over red, as B2 > (R2
1 +R2

2) [16].

In this dissertation, I focus primarily on Lanchester’s Laws in local application [16]. Lanchester

clarified that the laws he defines in his seminal work are not only useful for analysis of battles be-

tween large red and blue forces, but also in small regions of larger engagements. i.e. if a portion of

the protagonist team can achieve a force concentration advantage against some group of antagoinst
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team agents, one may assume that I am implying a local Lanchester’s Square Law advantage of

the protagonist team’s segment over the antagonist team’s segment unless otherwise noted.

2.3 Key Takeaways

As discussed in the previous sections, much of the literature pertaining to UAV aerial engagements

focuses on individual agent actions within small engagements, how to allocate agents to targets

in large engagements, and how a team of aircraft can make human-pilot-like tactical decisions. A

number of multi-agent RL approaches have been employed to learn policies for aircraft in small

aerial combat engagements or other cooperative-competitive game scenarios, but the teams in these

engagements are quite small, often with the largest team containing two or three agents at most.

What I believe the swarm-vs.-swarm literature lacks is a comprehensive approach to multi-agent

cooperative-competitive aerial combat engagements that leverages tactics that are known to be

effective in small and large engagements, can learn when and with which teammates to employ

these tactics, and can do so in a way that concentrates the team’s force on the enemy aircraft effec-

tively. My work fills this gap, first starting with a far-off defense scheme, exploring what affects

aerial combat engagements between teams of fixed-wing UAVs employing known-good human-

pilot-inspired hand-scripted aerial combat tactics (Chapter 3 [13]) in engagements of various sizes,

then details a deep-RL scheme that equips agents on the protagonist team to switch between the

hand-scripted tactics based on pairs of agent situational context representations (Chapter 4). I then

shift focus to the close-in defense problem and present a bio-inspired close-in defense approach to

protecting a fuel reservoir from a heterogeneous team of thieving attackers with a heterogeneous

team of defenders fueled from the fuel reservoir, all while trying to maximize the fuel quantity

remaining. This defense scenario investigates the force concentration advantages of the two types

of guards on the defending team and explores the emergent prioritization of agents to guard roles

in response to the nature of the attacking team, and draws comparisons to the biological scenario

that inspired the defense scheme (Chapter 5 [15]).
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CHAPTER 3

TACTICAL ANALYSIS

In this chapter, I compare the efficacy of a decentralized, greedy tactic and an explicitly-coordinat-

ing tactical behavior in swarm-vs.-swarm UAV engagements in simulation, as well as investigate

the role of the structure of human-pilot-inspired aerial combat tactics [14] in obtaining favorable

force concentration against the opponent team. More specifically, I investigate what affects engage-

ments involving one or both of these two tactical behaviors, specifically with respect to engagement

size and the effectiveness of each team’s weapons. Both of the behaviors investigated in this chap-

ter have strengths, but are also brittle and exploitable. Here, I refer to a tactical behavior as “brittle”

if it is effective at attriting opponents and preserving own-team agents in specific situations, but

ineffective at either or both of those aims in many other situations. Brittle can describe both a be-

havior’s inability to adapt to the natural progression of the engagement as well as its inability to

effectively counter opponents that do not fall within the tactic’s parameters of competence.

3.1 Simulation Design

In these experiments, two teams of fixed-wing UAVs are initialized at opposite ends of a 10 km-

by-10 km arena, facing each other. Individual team members’ initial positions are chosen by sam-

pling from a bivariate normal distribution, with µx = ±4 km, µy = 0 km, σx = 0.001 km2, and

σy = 2 km2. These teams approach one another and act according to the behavior assigned to

their team in an effort to attrit as many members of the other team as possible while preserv-

ing their own team’s numbers. All UAVs are aerodynamically identical, with parameters defined

in Table 3.1 [13]. Simulations are conducted in SCRIMMAGE [95], an open-source multi-agent

simulation framework, and all aircraft operate under a version of SCRIMMAGE’s SimpleAircraft
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Table 3.1: Aircraft Model Parameters

Property Symbol Value

Sensing Range rs 1,000.0 m
Firing Range df 100.0 m
Angular Firing Range δf 3°
Max bank angle φmax 45.0°
Turn Radius rtr 34.9 m
Cruise velocity vcruise 18.5 m/s
Min velocity* vmin,DA 15.0 m/s
Max velocity* vmax,DA 18.5 m/s
*Only relevant to Double Attack

fixed-wing motion model1and its corresponding controller, SimpleAircraftControllerPID2.

Evaluation – The experiments documented in this chapter compare the performance of two teams

of UAVs who use either greedy tactics or explicitly-coordinating tactics against a team of greedy-

tactic UAVs, and in a way that highlights the equal importance of own-team survival and opponent

attrition in coordinating tactics. The hypotheses for these experiments are that agents employing

explicitly-coordinating tactics in UAV aerial combat will attrit more opponents and have higher

own-team survival than teams employing greedy tactics, but also that a low weapon effectiveness

affects the teams that explicitly coordinate to aim more than the implicitly-coordinating agents.

The primary metric that quantifies the success of team A in an engagement between teams A and

B is the score, S(AvB), given in Equation (3.1). The score is the weighted sum of the percentage of

team A UAVs that survive the engagement and the percentage of UAVs of team B that are attrited.

In Equation (3.1), NAo and NBo are the starting number of UAVs on teams A and B, respectively.

1https://github.com/gtri/scrimmage/blob/8cfa91b254912796d25148456a4fac147fb7f362/
src/plugins/motion/SimpleAircraft/SimpleAircraft.cpp

2https://github.com/gtri/scrimmage/blob/1761c081720692a9540d6791d574a10fb23e26d7/
src/plugins/controller/SimpleAircraftControllerPID/SimpleAircraftControllerPID.
cpp
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Figure 3.1: A screenshot from an example simulation showing aircraft on two teams (blue, red)
engaged in a WVR dogfight.

Similarly, NAf
and NBf

are the final number of aircraft surviving on team A and team B.

S(AvB) =
1

2

(
NAf

NAo

)
+

1

2

(
1−

NBf

NBo

)
, (3.1)

Note that utilizing opponent attrition as the sole metric would score tactics that risk own-team

casualties for the sake of opponent annihilation more highly than more conservative tactics that aim

to ensure own-team survival. This would penalize coordinating tactics, as agents following coordi-

nating tactics require teammates with whom to coordinate and so aim to preserve teammates when

possible. Similarly, a metric that only considers own-team survival would reward evasiveness, not

effectiveness in combat scenarios. A combination of both factors, however, is sufficient to score

non-coordinating tactics and allows the strength of the simultaneous evasion and firing-opportu-

nity-creation of coordinated tactics to show. The number of aircraft surviving the engagement on

each team are recorded as well; this survival data, in combination with the score, provides a more

comprehensive picture of how the score of the protagonist team was achieved in the engagement.
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Sensing – Each UAV is equipped with a sensor that provides the position of any enemy aircraft

within range rs = 1 km of the sensing UAV, as illustrated in Figure 3.2. UAVs can sense the

positions and orientations of their team members with no restriction on range.

Figure 3.2: The circle denotes UAV B1’s sensing range rs. B1’s firing region is indicated by the
blue shaded region, which has radius df and angle θf . B1 can only fire at R1, and can sense
R1 and R2, but not R3.

3.2 Experimental Factors

The factors varied in these experiments are the tactical behavior the agents on a team exhibit, the

effectiveness of each team’s weapons, and the size of the teams.

Agent Behaviors

The UAVs simulated in these experiments follow one of two autonomous behaviors, Greedy Shooter

(GS) or Double Attack (DA). These behaviors are modeled after human-pilot-based tactical doc-

trine [14], and are chosen to emphasize the differences in the efficacy of coordinating and non-co-

ordinating tactics.
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(a) Bracket maneuver (b) Sandwich maneuver

Figure 3.3: Maneuvers employed by the DA autonomous behavior. R1 is an enemy aircraft, and
DA1 and DA2 are maneuvering according to the DA behavior denoted in the subcaption.

Greedy Shooter (GS) – GS agents aim at the nearest sensable opponent with proportional naviga-

tion, updating the opponent it aims at every timestep of simulation [13, 40, 41]. GS agents do not

coordinate or communicate with one another in any way.

Double Attack (DA) – Agents employing the DA behavior operate in pairs and depend on co-

ordinated maneuvers to target opponents. This behavior is based on the manned aerial combat

tactical doctrine of the same name [14]. The maneuvers DA agents employ, the bracket and the

sandwich [14], are illustrated in Figure 3.3 [13].

DA’s maneuvers aim to counter individual opponents located in front of or behind a pair of

partnered DA agents. The first of these maneuvers, the bracket (shown in Figure 3.3a), is a pincer

maneuver that achieves a firing opportunity against an enemy approaching a pair of DA from

the front. If an adversary is close behind the DA pair, they instead perform a sandwich (shown

in Figure 3.3b), a coordinated turn maneuver. If the enemy is too close behind the DA pair for a

sandwich, the DA agents fly directly away from the enemy with speed vmax,DA. This often results

in a stalemate in small engagements, as vmax,DA is the same as GS’s vcruise.
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The pairs DA agents operate in are decided by a centralized pairing function [63]; unpaired

Double Attack agents act as GS agents until they can be paired with another unpaired teammate. A

pair of DA explicitly coordinate only with each other throughout the simulation, unless one of them

is attrited. To encourage DA pairs to spread out and target different opponents from one another,

they are equipped with a Boids-inspired pack separation parameter [96], which causes a DA pair

to fly away from other DA pairs within 200 m.

To mimic leader-wingman pairs of aircraft flying side-by-side while approaching the locations

of enemy agents they intend to intercept, and to ensure that the DA pairs can employ their coor-

dinated maneuvers at the beginning of the engagement, the members of each DA pair are moved

to be in echelon formation [14] with each other at the start of each trial. This occurs while all

members of both teams are still well beyond each others’ sensing ranges, and does not occur at any

other time; if DA agents are re-paired later in the engagement, they must achieve echelon formation

through their own maneuvering.

Team Size

I conducted experiments for team size configurations of 2-vs.-1, N-vs.-N ∀ N ∈ {2, 4, 10}, and

2-vs.-M ∀M ∈ {2, 4, 6, 8, 10}.

Weapon Model

A UAV fires at the first opponent agent it senses within its firing region (see Figure 3.2 [13]). If the

UAV’s fire attempt does not violate the frequency restriction of one shot per half-second, whether

the shot disables its target depends on pk, the probability of kill. pk is a function of β, the firing

aircraft’s weapon effectiveness; x, the Euclidean distance between the firing aircraft and its target;

and df , the maximum firing distance:

pk =


exp

(
−x
β

)
if x ≤ df

0 otherwise
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Figure 3.4: The relationship between x, the distance between the firer and firee; the firer’s weapon
effectiveness, β; and the probability that the firer’s shot kills the firee, pk.

Figure 3.4 shows the relationship between β, x, and the resulting pk for x ≤ df . The simulations

detailed in this chapter and the following chapter ignore the effects of friendly fire, collisions, and

the time-of-flight of each shot.

3.3 Procedure

The experiments discussed in this chapter compare the scores of the protagonist team (either DA or

GS; team A in Equation (3.1)) against an antagonist team of GS UAVs (team B in Equation (3.1)) in

separate engagements of varying sizes and with each team’s weapon effectiveness varied. For each

team size configuration, team tactic matchup, and weapon effectiveness matchup, I conducted 500

trials. A trial ends either when all members of one team are attrited, or after two hours of simulation

time has passed, whichever occurs first. Simulations that reach this time limit are included in the

results presented in Section 3.4. All UAVs in these experiments default to flying straight with

constant heading when no opponents are within sensing range, and are confined to stay within

the bounds of the arena. To ensure that opposing aircraft that are initialized in positions that are
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laterally far apart can eventually encounter an opponent, zero-mean, uniformly-distributed random

noise in the range [−0.05 rad, 0.05 rad] is added to each aircraft’s initial heading.

3.4 Results

The effects of Double Attack’s pairwise coordination are apparent when compared to engagements

comprised of two GS teams, though not always to the benefit of the DA team. What DA’s coor-

dinated maneuvers lack in aggression and offensive effectiveness, they made up for in terms of

resource preservation; as both the bracket and sandwich maneuvers DA agents employ are simul-

taneously defensive (targeted DA agent evading the enemy) and offensive (un-targeted DA agent

targeting the enemy that is chasing after its partner), In most scenarios, DA teams show themselves

to be more likely to have more team members survive each engagement than the corresponding

GS team. High-density engagements are shown to be a weakness for DA, however; in these dense

engagements, groups of GS often surround pairs of DA closely in a way that prevents DA pairs

from completing their maneuvers without one or both DA agents being attrited.

3.4.1 2-vs.-1

The 2-vs.-1 engagements are a comparison of DA’s coordinated bracketing of a single opponent

and GS’s naïve approach to the same scenario. DA performs well in these engagements, and

strongly outperforms the team of two GS facing a single GS opponent, as seen in Figure 3.5,

Figure 3.6, and Figure 3.7. For the 2 GS vs. 1 GS matchup, if the lone GS agent and only one

GS on the team of two GS agents survive the initial approach, the remainder of the engagement

between the two opponent GS agents generally consists of a tail-chase scenario that ends in a

simulation timeout. The DA teams, whose maneuvers incorporate both offensive and evasive com-

ponents, rarely find themselves in such a 1-vs.-1 tail-chase scenario in these small engagements.

As mentioned earlier, DA’s bracket is designed for countering isolated opponents and offers a fir-

ing opportunity for a DA agent during which the targeted GS agent cannot possibly fire back—the

ultimate local force concentration advantage. As can be seen in the decline in scores and blue-team
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Figure 3.5: Average score plot for two-vs.-one engagements between teams of two DA or GS and
one GS.

survival in Figure 3.6 and Figure 3.7, however, the DA team’s success declines more sharply than

does the team of two GS’s as the team of two’s weapon effectiveness decreases; this decreased

weapon effectiveness causes a firing DA UAV to be less likely to be able to take advantage of the

firing opportunity created by it and its partner’s maneuvers. Nevertheless, the team of two DA still

outscores the team of two GS in all 2-vs.-1 cases.

3.4.2 N-vs.-N

The N-vs.-N scenario compares how teams of N DA agents fare against N GS agents to how GS

teams of size N counter each other (for N ∈ {2, 4, 10}).

As shown in the 2-vs.-1 cases, DA is adept at countering isolated opponents. DA outscores its

corresponding GS team in 2-vs.-2 engagements, both when the opponent’s weapon effectiveness is

low (Figures 3.11 and 3.12) as well as when the opponent’s weapons are high-quality (Figures 3.13

and 3.14). The volatility of DA’s scores shown in the 2-vs.-2 and even in the 4-vs.-4 wireframe

score plots (Figures 3.8 and 3.9, respectively) is caused by DA’s preference for its bracket maneu-

29



0.66

0.79 0.83 0.86 0.86 0.86

2
0

0.2

0.4

0.6

0.8

1

0.59 0.61
0.67 0.69 0.71 0.71

2

Team 1 Beta
50
100
250
500
750
1000

Team 1 Scores (vs. GS with beta = 50)

DA vs GS GS vs GS

Team 1
Score

Team Size

(a) Scores of teams of two DA, two GS agents against a single GS agent with fixed weapon effectiveness of β = 50.

0.70

0.81
0.86 0.87 0.87 0.87

2
0

0.2

0.4

0.6

0.8

1
0.89 0.88 0.91 0.92 0.94 0.91

2

Team 1 Beta
50
100
250
500
750
1000

Team 1 Survival % (vs. GS with beta = 50)

DA vs GS GS vs GS

Team 1
Survival %

Team Size

(b) Average survival percentage of teams of two DA, two GS agents against a single GS agent with fixed weapon
effectiveness of β = 50.

0.37

0.22 0.19
0.14 0.15 0.15

2
0

0.2

0.4

0.6

0.8

1

0.71
0.66

0.57
0.53 0.52 0.49

2

Team 1 Beta
50
100
250
500
750
1000

Opponent (GS with beta = 50) Survival %

DA vs GS GS vs GS

Opponent
Survival %

Team Size

(c) Average survival percentage of single GS agent with fixed weapon effectiveness of β = 50 in an engagement against
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Figure 3.6: Against a single opponent with a poor weapon, the team of two DA outscores the team
of two GS for all values of the team of two’s β. The team of two GS’s own-team survival metrics
are stronger across all values of the team of two’s β than those of the team of two DA, but the
team of two DA’s ability to attrit its opponent is unmatched by the team of two GS across all
team-of-two β values.
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Figure 3.7: The team of two DA outscores the team of two GS for every value of the team of two’s
β when the team of one’s β = 1000. When equipped with a poor weapon, the team of two DA’s
survival suffers more than that of the team of two GS with the same weapon, highlighting that DA
is more dependent upon an effective weapon than GS.
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Figure 3.8: Average score plots for 2-vs.-2 engagements.
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Figure 3.9: Average score plots for 4-vs.-4 engagements.
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Figure 3.10: Average score plots for 10-vs.-10 engagements.

ver. If the two GS start close to one another, the DA pair tries to bracket one GS, while the other

GS can often shoot one DA before the two DA finish their maneuver. The remaining DA must then

face two GS in a close-in engagement, acting as a GS agent due to its lack of partner. If the two GS

start far apart from one another, however, the 2-vs.-2 DA-vs.-GS scenario is simply two sequential

2 DA vs. 1 GS engagements, the type of scenario DA is designed to counter.

In situations with high opponent density, such as in the 10-vs.-10 engagements shown in Fig-

ure 3.10 and shown for specific antagonist team weapon effectivenesses in Figures 3.11 to 3.14,

DA is at a disadvantage when compared to GS. A pair of DA require at least six turn radii of empty,

non-hostile space between themselves and their target opponent in order to perform a bracket, and

their sandwich maneuver is similarly constrained. For larger N in the N-vs.-N experiments, en-

gagements are more likely to develop into a dense melee in the center of the arena after the initial

approach of the two teams. A DA pair performing a bracket or sandwich in this dense area will

likely lose at least one member to enemy fire before the maneuver can have any effect on the oppo-

nent, particularly in engagements in which the opponent team’s weapon effectiveness is high. This

limitation hampers DA’s performance for larger N. Additionally, Figures 3.11 and 3.12 show that,

for N = 10 and opponent β = 50, the β-advantaged team of GS in the GS-vs.-GS engagements
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Figure 3.11: Average score, survival percentage, and opponent survival percentage for N-vs.-N
engagements with a GS protagonist team and with the opponent team having β = 50.
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(c) Average survival percentage of N GS agents with fixed weapon effectiveness of β = 50 in an engagement against
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Figure 3.12: Average score, survival percentage, and opponent survival percentage for N-vs.-N
engagements with a DA protagonist team and with the opponent team having β = 50.
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(c) Average survival percentage of N GS agents with fixed weapon effectiveness of β = 1000 in an engagement against
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Figure 3.13: Average score, survival percentage, and opponent survival percentage for N-vs.-N
engagements with a GS protagonist team and with the opponent team having β = 1000.
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Figure 3.14: Average score, survival percentage, and opponent survival percentage for N-vs.-N
engagements with a DA protagonist team and with the opponent team having β = 1000.
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score more highly than do the team of ten DA with the same weapon advantage did in the DA-vs.-

GS engagements. The scores of ten-DA and ten-GS teams are more similar across their weapon

effectiveness cases when they face opponents with weapon effectiveness β = 1000 than when they

were facing opponents with β = 50. Nonetheless, the difference in scores between DA and GS

teams against opponent GS teams with β = 50 in 10-vs.-10 engagements highlights how DA’s

tactics are not designed for dense engagements; for such scenarios, a GS team gets more value out

of a weapon advantage than a DA team.

Figures 3.11 and 3.12 offers interesting insights into the role of weapon advantage in air-to-

air engagements. As shown in Figure 3.11a, the average scores of the GS teams of N generally

increase with increasing N when the GS team being scored has a weapon effectiveness advantage

over the opposing GS team with β = 50. In contrast, the scores of the DA teams in the same

scenarios—increasing engagement size, against an opposing team with poor weapons—show a

decrease in score as N increases, as shown in Figure 3.12a. The decrease in score of the DA teams

as their weapon quality drops is more severe than that of their GS counterparts for all team sizes

tested, especially when the DA team’s weapon is very poor (β = 50 or β = 100); this indicates that

DA’s sensitivity to dense engagement scenarios generally outweighs its β advantage, particularly

in comparison with a GS team with the same weapon advantage against their opponents. In the

survival percentage plots (Figures 3.11b, 3.11c, 3.12b and 3.12c), note that the teams of DA sustain

more losses—but also attrit more of their opponents—than do the corresponding GS team. In

contrast with the GS team’s increasing score with increasing N, the survival percentage of the

scored team of N GS decreases with increasing N; their increase in scores with increasing N is

driven by the increase in the number of opponents they were able to attrit as N increases. The team

of N DA, however, sees decreasing survival percentage of its own team with increasing N.

3.4.3 2-vs.-M

The results for the 2-vs.-M engagements, shown for specific team-of-M weapon effectivenesses

in Figures 3.19 to 3.22, and for all M ∈ {4, 6, 8, 10} in Figures 3.15 to 3.18 indicate that, as M
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Figure 3.15: Average scores in 2-vs.-4 engagements.

increases, both β and agent behavior become far less influential in the outcome of the engagement,

a finding similar to results from [97].

Behavior still plays a large role in engagement outcome, however, particularly when the team of

M has low β—in that case, the team of two GS performs better against this weapon-disadvantaged

team of M than does the team of two DA ∀ M, highlighting DA’s dependency on an effective

weapon. Two GS combating four GS have a stronger advantage over their opponent than two DA

combating four GS when the four GS have weak weapons, but the two DA combating four GS

opponents are less severely impacted by an increase in their opponent’s β.

While one must expect the teams of two to be at a disadvantage for M > 2, it is interesting to

compare the teams of two against one another in how slowly their scores degrade as M increases.

Figure 3.23 shows that, with all teams having βx = βy = β = 100, when M = {2, 4}, the team

of two DA outperforms the team of two GS; only at M = 6 does the team of two GS outperform

them, and only by a small margin. Trends with both the teams of two and of M having the same β

indicate that, for β > 100, the team of two DA outperforms the team of two GS for all values of M,

though still approaches the same asymptote that the scores of all cases are seen approaching in Fig-

ure 3.23. This performance of the two DA is likely due to the high β allowing DA’s maneuvers to
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Figure 3.16: Average scores in 2-vs.-6 engagements.
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Figure 3.18: Average scores in 2-vs.-10 engagements.

be especially effective.

3.5 Discussion

One hypothesis for these experiments is that low weapon effectiveness affects DA agents more

than GS agents, support for which is especially apparent in the differences between the DA and

GS team-1 scores shown in Figures 3.11 and 3.12, respectively.

The second hypothesis is that explicitly-coordinated maneuvers are more effective in UAV

aerial combat than non-explicitly-coordinated maneuvers, with the null hypothesis being that ex-

plicitly-coordinated maneuvers are equally effective or less effective than their non-explicitly-co-

ordinating counterparts. While the coordinated maneuvers of DA are far more effective than their

GS-team counterparts in small, 2-vs.-1 engagements and in 2-vs.-2 engagements, as the engage-

ment arena becomes more dense, the DA teams demonstrate less effectiveness than their GS coun-

terparts against opponents equipped with low-quality weapons. The DA teams in the N-vs.-N for

N = 2, 4 engagements outperform their GS counterparts for opponents with poor (β = 50) and

high-quality (β = 1000) weapons, but fall short of their GS counterparts when the opponents’

weapons are poor, and only meet the performance of the GS counterparts against opponents with
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(b) Average survival percentage of teams of two GS agents against a team of M GS agent with fixed weapon effective-
ness of β = 50.
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(c) Average opponent survival percentage for teams of two GS agents against a team of M GS agent with fixed weapon
effectiveness of β = 50.

Figure 3.19: Average score, survival percentage, and opponent survival percentage for 2-vs.-M
engagements with a GS protagonist team and with the opponent team having β = 50.
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(b) Average survival percentage of teams of two DA agents against a team of M GS agent with fixed weapon effective-
ness of β = 50.
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(c) Average opponent survival percentage for teams of two DA agents against a team of M GS agent with fixed weapon
effectiveness of β = 50.

Figure 3.20: Average score, survival percentage, and opponent survival percentage for 2-vs.-M
engagements with a DA protagonist team and with the opponent team having β = 50.
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Figure 3.21: Average score, survival percentage, and opponent survival percentage for 2-vs.-M
engagements with a DA protagonist team and with the opponent team having β = 1000.
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Figure 3.22: Average score, survival percentage, and opponent survival percentage for 2-vs.-M
engagements with a GS protagonist team and with the opponent team having β = 1000.

45



2 4 6 8 10
M

0.0

0.2

0.4

0.6

0.8

1.0

S(XvY)         

S(XvY): 2 vs M

2 DA (X) vs M GS (Y)
2 GS (X) vs M DA (Y)
2 GS (X) vs M GS (Y)
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high-quality weapons. Qualitative observation of several engagements shows that it is not simply

the number of UAVs in the arena that causes DA to lose effectiveness. After the initial approach

phase between a DA and a GS team in a large engagement, the engagement becomes a dense melee

of tightly-turning UAVs, with DA agents spending more time attempting to achieve echelon form

with their partners, finding their new partners as existing partners are attrited, and trying to set up

their coordinated maneuvers than they did actually maneuvering to aim their fire. When a pair of

DA agents begin a coordinated maneuver in such dense conditions, one or both members of the

DA pair are often attrited by nearby GS agents before the maneuver is completed; thus, in dense

conditions, DA’s dependence upon maneuvers for aiming is to their disadvantage. The GS agents,

in contrast, are unyielding in their targeting and do not give the DA agents the space or time they

require to maneuver, leading me to fail to reject the null hypothesis that explicitly-coordinating

maneuvers are more effective in larger engagements than non-explicitly-coordinating maneuvers.

When considering protagonist team performance in larger engagements with the antagonist

team having β = 50 (Figures 3.11, 3.12, 3.19 and 3.20), note that there is a prioritization aspect to

consider with respect to both own-team weapon quality and team size in a hypothetical situation

in which one is selecting whether to equip one’s UAVs with DA or GS. In Figures 3.11, 3.12, 3.19

and 3.20, the average survival percentages of the teams of N DA (Figure 3.12b) and the teams of
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two DA (Figure 3.19b) are lower than those of the corresponding GS teams, and these DA survival

percentages are more affected by the DA teams’ weapon quality than are the DA teams’ scores.

Against opponents with high-quality weapons, in the N-vs.-N cases (see Figures 3.13b and 3.14b)

and in the 2-vs.-M cases (see Figures 3.21b and 3.22b), the DA teams survive roughly as well as

the GS teams for opponent team sizes of N = 2 and N = 4 when the protagonist teams are equipped

with high-quality weapons. The team of two DA in Figure 3.21b is unable to maintain this survival

percentage parity with the teams of two GS in Figures 3.21b and 3.22b when the opposing team

size is six or greater, a conclusion also supported by the N = 10 survival percentages in the N-vs.-N

cases seen in Figures 3.13b and 3.14b. As DA’s behavior is constructed around employing coordi-

nated maneuvers to aim at opponents precisely, its disadvantage in dense scenarios—particularly

against tactics that are well-equipped to exploit force concentration in dense scenarios—is not un-

expected. DA’s maneuvers require one partner to evade the opponent aircraft to entice the opponent

into a predictable position where the DA-evader’s pursuer partner could achieve a brief moment of

favorable force concentration—one where the pursuer can fire at the opponent and the opponent

cannot fire at either the pursuer or evader. If the pursuer is unable to attrit the opponent in that

brief firing opportunity window, one or both of the DA agents—usually the evader—are at risk of

being fired upon by their escaped opponent. Despite the risks of employing these coordinating ma-

neuvers that require non-hostile space and maneuvering time to target and fire at opponents, note

that, in Figures 3.11c, 3.12c, 3.13c and 3.14c, the DA teams’ ability to attrit opponents outstripped

that of the corresponding GS teams with corresponding weapon effectiveness in all of the N-vs.-N

engagements. In the 2-vs.-M engagements shown in Figures 3.19c and 3.20c, however, observe

that the team of two DA outperforms the team of two GS for opponent team sizes between 2 and 8;

the team of two DA are unable to attrit as many opponents as the team of two GS is in the 2-vs.-10

engagements for any team-of-two’s weapon quality tested. The team of two DA’s difficulty for

opponent team sizes of 10 supports the claim that the DA tactical behavior’s performance suffers

in especially dense engagement conditions, whereas the GS behavior is much more capable in such

dense scenarios. The GS agents simply do not need to coordinate aiming opportunities when they
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find themselves in dense conditions, making them more resilient than DA agents in these scenarios.

The opponent survival metrics for the 2-vs.-M experiments shown in Figures 3.21c and 3.22c in

which opponents had weapon effectiveness of β = 1000, however, show the teams of two DA and

two GS were approximately equally unable to attrit many opponent agents when facing teams of

size M. As shown in Figures 3.21b and 3.22b, the team of two GS has better survival percentages

against opponent teams of M β = 1000 GS agents than do their DA counterparts, suggesting that

the DA pair’s risky aiming maneuvers are especially problematic for them in these 2-vs.-M en-

gagements. In such engagements, DA pairs simply do not have the non-hostile maneuvering space

they need to aim at opponents, and so are more likely to be attrited than their GS counterparts, es-

pecially when their opponent team has high-quality weapons. The opponent’s high weapon quality

makes them better able to take advantage of brief snapshot opportunities against the maneuvering

DA pair, especially if the maneuvering DA pair is not aiming at the opponent who takes advantage

of one of these snapshot opportunities.

3.6 Limitations

DA’s decline in performance in dense engagement scenarios highlights a limitation of this work

alluded to in Section 3.2: neither the DA nor the GS tactical behavior can command increases in

speed beyond vcruise, and only DA agents can slow down (briefly, only to satisfy timing needs in

specific maneuvers or maneuver setups) below a speed of vcruise. In this chapter and Chapter 4, I

choose to focus on how these tactics perform under this limitation, but in Chapter 6 discuss possible

future work in which GS and DA are capable of modifying their speed more freely. Based on early

versions of the DA tactical behavior, I postulate that, were both tactics to be equipped with more

freedom in their velocity choices, such experiments would likely see far more effectiveness from

the DA agents, particularly in their ability to isolate opponents to set up their aiming maneuvers.

In the early development stages of DA, when the DA agents were tested with vmax,DA > vcruise,

DA was even more effective at leveraging its coordinated maneuvers than it is shown to be in

this chapter. A DA pair that recognizes that it is in a situation in which the opponents near the
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pair are too close to execute an effective bracket or sandwich enters a “flee” internal state, during

which the pair turn away from the nearest opponents and fly at their maximum speed. DA agents

with vmax,DA > vcruise will continue this (literal and figurative) flight until they are several more

turn radii away from an opponent than they would need to bracket that opponent. They then turn

around, line up in echelon formation, and bracket the opponent, who, if GS, likely either attempted

to follow the DA pair or shifted its aim to another agent, both conditions under which set the DA

pair up well for a bracket. In an effort to keep the GS tactical behavior simple, I did not add any

capability for GS to adjust its speed, and so, to make the experiments in this chapter fair between

the two teams, DA’s vmax,DA was set to be the same as vcruise. Despite this limitation, DA is

nonetheless quite effective in not only small engagements, but also as engagement size increases.

3.7 Contributions

In this chapter, I investigate two tactical behaviors for swarm-vs.-swarm aerial engagements be-

tween fixed-wing UAVs, and identify under what conditions each performs best. Both GS and DA

are very effective tactical behaviors, but the coordinated maneuvers of DA allow DA teams to per-

form most strongly when the DA team has highly-effective weapons and is able to employ those

weapons against isolated opponents—scenarios in which DA pairs have the space and time to ma-

neuver without interruption. The decentralized GS behavior is more effective than DA in denser

situations and is more resilient to being equipped with a poor-quality weapon, as its simple logic

concentrates each team member’s force upon the nearest threat in ways that allow GS agents to fire

at their targets repeatedly without dependence upon any teammates’ exact actions. Given these in-

sights, in Chapter 4, I introduce and demonstrate a deep reinforcement learning scheme that trains

agents to select when to select DA or GS or when to maneuver differently than either DA or GS

would dictate. This approach, which fosters well-timed coordination between specific team mem-

bers by taking paired agent state representations as inputs to the neural network which defines the

protagonist team members’ policy, performs more strongly according to the metric introduced in

this chapter than either DA or GS alone.
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CHAPTER 4

LEARNING TO LEVERAGE TACTICS

4.1 Motivation

In aerial combat scenarios such as those presented in Chapter 3, it is evident that there are differ-

ences between the ideal scenarios in which one would employ DA, GS, or perhaps another tactic

altogether; thus, in this chapter, I present a novel algorithm that leverages deep reinforcement

learning from pairs of agent states to decide which tactic each agent should utilize, with which

teammate an agent should partner if DA is selected, and what an agent should do if neither DA nor

GS are tactically favorable. This approach is trained and tested in the same simulation environment

as is employed in the experiments for Chapter 3, albeit in a smaller (1 km-by-1 km) arena, with all

agents having high weapon effectiveness β = 1000 (good-quality weaponry), and without allow-

ing DA agents to start in echelon formation with their initial partner. I present this trained tactical

behavior for usage in similar situations to those in which one might employ the far-off defense

approaches given in the previous chapter.

4.2 Background

As discussed in Section 3.7, the UAVs on the protagonist team would benefit from being able to

evaluate their own and their teammates’ situational context in order to select when to perform GS,

when (and with whom) to perform DA, and when to do something else, all for the team’s overall

tactical advantage. To this end, I turn to a classic RL algorithm, REINFORCE [98, 99], to equip

agents to learn in what situations these action choices are appropriate. The algorithm itself is well-

known and has been used to train neural networks in many applications; my primary theoretical

contributions in this chapter are how the inputs to the agents’ policy network are structured and

how the outputs of the network are employed in action selection and agent partner selection.
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4.2.1 Problem Formulation

Suppose the 2D aerial combat problem is an MDP [99], a five-tuple, as given in Equation (4.1).

〈S,A,R, T (s, a, s′), γ〉, (4.1)

s =×m

i=1
si is the joint state for the team of m homogeneous learner agents, each of which has

individual state si. S is the set of all joint states. Likewise, a =×m

i=1
ai is the joint action for

the m agents on the team, with ai being agent i’s action and A being the set of all joint actions.

R = ri(s,a) is the reward given to all agents on the team for having joint state s and taking joint

action a, and γ is the discount factor.

4.2.2 REINFORCE

In the REINFORCE [98, 99] policy gradient RL algorithm, the goal is to learn a policy, in this case

π (ai|s, si,θ), where θ is a parameter vector by which the policy is differentiable. In the formu-

lation introduced above, as the scenarios begin with a number of agents and agents are attrited as

time progresses, episodic REINFORCE [98, 99], where agents operate in a short beginning-to-end

scenario, learn from the resulting trajectories, and then begin anew in another short scenario, but

operating under the policy updated by the most recent training epoch.

The aim of a policy gradient method is to to maximize a performance measure, J(θ), via

gradient ascent, as in Equation (4.2).

θk+1 ← θk + α∇Ĵ (θk) (4.2)

In this chapter, k is the training epoch, α is the learning rate, and Ĵ(θk) is the estimation of the

gradient of the performance measure with respect to θk [99]. In episodic REINFORCE, the gra-

dient estimate ∇J(θ) ∼ E[∇Ĵ(θ)] is obtained by recording the joint states encountered, joint

actions executed, and rewards received in an episode, then performing the gradient ascent step

given in Equation (4.3) and updating the parameter vector θ as in Equation (4.4).
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∇J (θk) ∝ Eπ,i∈m

[∑
ai

Gt
∇π (ait | (sit, st) ,θk)
π (ait | (sit, st) ,θk)

]
(4.3)

θk+1 ← θk + αEi∈mGt
∇π (ait | (sit, st)θk)
π (ait | (sit, st) ,θk)

(4.4)

Throughout episode k, the training framework stores the joint states, joint actions, and rewards

agents encounter. Upon conclusion of epoch k’s episode, the framework then updates the gradi-

ent estimate of the performance measure from the joint states, joint actions, and rewards stored

in episode k and updates the parameter vector accordingly, which updates the policy. Then, the

framework starts episode k + 1 for epoch k + 1’s training with the agents operating under the

updated policy, π(ai|si,θk+1).

4.2.3 Entropy

In training off-policy RL methods such as Deep Q-Networks (DQN), ε-greedy action selection [99,

100] is frequently employed to encourage agents to explore a variety of action choices in a given

state to prevent the learned policy that will be employed at test time from converging to a local

optimum instead of the global optimum. Policy gradient methods such as REINFORCE, however,

are classed as on-policy methods, meaning that the policy being utilized during training is exactly

that which will ultimately be employed at test time; thus, training with an alternative policy (such

as that implicitly constructed when leveraging ε-greedy action selection method during training

episodes) is not permissible [99]. An on-policy-friendly method for encouraging exploration of

actions is adding a term, given in Equation (4.9), to the performance measure objective function

that accounts for entropy in agent action choices.

H (sit) = −
∑
at∈At

π (ait | sit, st) log π (ait | sit, st) (4.5)

While an entropy term encourages agents to explore different actions during training than it might

visit under a deterministic policy-in-training, as REINFORCE is an on-policy method, the agent’s
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policy at test time will be somewhat stochastic. Some stochasticity in a policy is not always detri-

mental [99], however; in terms of tactical decisions, an agent with no stochasticity in its actions is

likely to see its opponents exploit its determinism!

In the performance measure gradient estimate utilized for training in this chapter, the entropy

term in Equation (4.9) is multiplied by a small coefficient hyperparameter, λ, to ensure that the

entropy term does not overpower the other terms of the performance measure gradient estimate.

This hyperparameter has a minimum value λ = 0.01 and is increased by a factor of 0.005 (up to a

maximum of λ = 0.02) after every epoch in which one action is selected less than 10% of all of the

action selections made on the learner team in that epoch. These values for the entropy coefficient

provided sufficient encouragement during training for agents to explore their action choices.

4.3 Procedure

As mentioned in Section 3.7, both training and testing are conducted in the same simulation en-

vironment and with the same type of fixed-wing aircraft as were used in Chapter 3, albeit in a

smaller engagement arena (in this chapter, 1 km-by-1 km, while in Chapter 3, the arena was 10 km-

by-10 km) and with minor motion model and controller parameter changes to fine-tune the perfor-

mance of both baseline tactics. In this section, I present the procedure with which the agents are

trained, define the agents’ state space, detail the procedure agents employ to select actions based

on the outputs of the policy network, define the policy network’s architecture, and detail the mea-

sures with which the training framework ensures consistent agent initialization across cases during

training and testing.

4.3.1 Training Details

The training framework employs REINFORCE to train a neural network that takes as input pairs of

agent states and outputs which action the first of the two agents whose states were passed in should

take with respect to the context of the state pair, as well as the mean of the yaw rate the agent

should use if it chooses to execute neither DA nor GS. The network is trained for 1000 epochs,
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Figure 4.1: The channels in the state representation of agent i.

Table 4.1: Channels of an Agent’s State

Channel Quantity

0 Positions of self and teammates*
1 Positions of members of opponent team*
2 Sum of x-components of velocity of agents in each bin*
3 Sum of y-components of velocity of agents in each bin*
4 Sum of yaw rates of agents in each bin
*Relative to observing agent’s body-fixed reference frame

with each epoch being trained on the most recent engagement’s joint-state-joint-action pairs and

the reward received by all teammates at the end of the engagement. The teams train against teams

of either two or four agents that employ either DA or GS for the entirety of training. A training

episode may last up to 500 timesteps; with each timestep being 0.1 s long, a training episode may

last 50 s at most.

4.3.2 State Representation

The state representation of agent i is defined as a multi-channeled ego-centric discretization of the

1,000 m square around agent i. The channels in this discretization are illustrated in Figure 4.1 and

defined in Table 4.1. If multiple agents are present in the same bin of the discretization when the

simulation assembles an agent’s state, the co-binned agents’ relevant values are summed1.

1https://github.com/numpy/numpy/blob/v1.22.0/numpy/lib/twodim_base.py; see lines
689-693
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These discretized state representations are generated for each alive agent on the protagonist

team. As stated in Section 4.2.1, the joint state of the team of learner agents is s =×m

i=1
si. I

discuss in Section 4.3.4 how each learner agent leverages the joint state of its team along with its

own state to make action decisions.

4.3.3 Policy Network Architecture

The agents trained and tested in the work described in this chapter, Paired Situational-Context

Evaluator (PSCE) agents, operate under the policy of a neural network, the architecture of which

is depicted in Figure 4.2. The policy network architecture is depicted in Figure 4.2; this network

begins with five convolutional layers with ReLU [101] activation, then splits into two branches. The

first branch, the output of which the action-selection algorithm utilizes for selection of an agent’s

discrete action, consists of of two fully-connected layers with ReLU activation and ends with a

softmax. The second branch, which provides a continuous output leveraged in selecting the agent’s

yaw rate if the agent selects Maneuver (MN), is made up of three fully-connected layers, the first

two of which utilize ReLU activation and the last of which employs linear activation, resulting in a

scalar output that can be positive or negative. The policy network weights are initialized via Xavier

Uniform initialization with a gain of 1.02. At each timestep, a PSCE agent may choose to execute

a single timestep of either DA (with a specific partner, explained below), GS, or MN. If MN is

selected, the agent’s yaw rate setpoint is assigned to be the yaw rate drawn from a distribution

defined by the output of the continuous branch of the policy network. The output of these two

branches is utilized in the action selection procedure detailed in Section 4.3.4.

2https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.xavier_uniform_

55

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.xavier_uniform_


Fi
gu

re
4.

2:
T

he
ag

en
ts

’
ac

tio
ns

ar
e

se
le

ct
ed

ba
se

d
on

th
e

ou
tp

ut
s

of
th

is
ne

ur
al

ne
tw

or
k’

s
ev

al
ua

tio
n

of
pa

ir
s

of
th

e
st

at
e

of
th

e
ag

en
t

w
ho

se
ac

tio
n

is
be

in
g

de
ci

de
d

an
d

st
at

es
of

its
po

ss
ib

le
pa

rt
ne

rs
.

56



CNNs
𝜙

Discrete 
branch

𝜌

Continuous 
branch

𝜉

softmax

	𝒩 𝜇!", 𝜎#
	𝒩 𝜇$", 𝜎#

𝜇!!
𝜇!$
𝜇$!
𝜇$$

PA, SA GS DA MN

𝑖, 𝑖 0.13 0.32 0.55

𝑖, 𝑗 0.25 0.60 0.15

𝑗, 𝑖 0.10 0.15 0.75

𝑗, 𝑗 0.09 0.12 0.79

	
	
	
	
	
	
	
	
	
	
	
	
	
			
	
	

𝜓!̇
𝜓$̇

PA 𝑖 selects from Categorical*(
GS 𝒊 DA 𝒊 MN 𝒊 GS 𝒋 DA 𝒋 MN 𝒋

0.13 0.32 0.55 0.25 0.60 0.15 )

PA 𝑗 selects from Categorical(
GS 𝒊 DA 𝒊 MN 𝒊 GS 𝒋 DA 𝒋 MN 𝒋

- - - 0.09 0.12 0.79 )
If PA 𝑖 did not select DA 𝑗, then

*weights are re-normalized when 
necessary for distribution creation

à𝜋 𝑎!" (𝑠!" , 𝒔") for agent 𝑖

à𝜋 𝑎#" (𝑠#" , 𝒔") for agent 𝑗

PA, SA
(Primary Agent,

Secondary Agent)

𝑠! , 𝑠!

𝑠! , 𝑠$

𝑠$, 𝑠!

𝑠$, 𝑠$

𝑠$

𝑠!

Figure 4.3: Illustration demonstrating PSCE agent action selection for a team containing two
agents, i and j.

4.3.4 Action Selection

The action selection procedure for agent i begins with all possible pairings of agent states between

agent i’s state and all alive teammate agents with un-selected actions; Figure 4.3 shows this for a

team containing two agents, agents i and j.

Consider a team with two agents, i and j, whose actions are not yet assigned for the current

timestep. Action selection for agents i and j starts by with the computation of the joint state—the

Cartesian product of the states of all of the agents on the team. The Cartesian product provides

all possible pairings of teammates’ state representations. These state representation pairings are

passed through the policy network to generate the distributions from which each agent will select

its action at this timestep. Note that own-state pairings are included in the inputs to the network;

this allows agents whose teammates have already all selected actions—or all been attritted—to

continue to leverage the policy network for action selection. The agent whose state appears first

in a two-agent-state pairing is the primary agent of the pairing. The primary agent of a pairing

selects its action based on all outputs from the policy network in which it is the primary agent.
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Agents whose states are paired with that of the primary agent to select the primary agent’s action

are referred to as secondary agents. Each timestep, all agents may be primary agents if they are not

selected to perform DA with another teammate before their turn for action selection arrives.

The outputs of the softmax branch are collected and organized according to the state pairing

that generated them, as shown in Figure 4.3. The agents, in order of agent ID number3, select

their action—GS, MN, or DA (with the secondary agent in the corresponding state pairing as the

DA partner)—from a categorical distribution defined by the outputs from the softmax branch (re-

normalized so as to create a valid probability distribution). If an agent’s action has already been

selected, whether by it being primary agent already for the current timestep or by being selected

to be the DA partner of another teammate, that agent does not undergo the primary-agent action

selection procedure, nor are softmax outputs generated from it being a secondary agent included in

other primary agents’ action selection distributions; this is illustrated in Figure 4.3 by the crossed-

out column headings for agent j. The softmax output generated for the selected action from the

state pairing that resulted in that action being selected is π(ait | sit, st) for that agent at timestep

t. If an agent selects MN from the categorical distribution over its action choices, it sets its yaw

rate setpoint for the next timestep to ψ̇i, where ψ̇i is sampled from N (µib, σ
2). For this yaw rate

distribution, σ = 0.1 rad/s and µib is the output yaw rate mean in rad/s from the continuous branch

of the policy network, with b corresponding to the ID of the agent whose state, when paired with

that of agent i, generated the outputs from which the MN action was sampled. Equation (4.6), a

component of the performance measure used to train the policy network, comes from the sampled

yaw rate and the Probability Density Function (PDF) of the normal distribution from which the

yaw rate is sampled.

π
(

Ψ̇it = ψ̇it | sit, st, ait = aMN
it

)
(4.6)

3Any defined agent ordering is sufficient.
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4.3.5 Performance Measure Gradient Estimate Components

The estimate of the gradient of the performance measure with which the neural network defined

in Figure 4.2 is trained is given in Equation (4.7).

∇Ĵ(ρ, φ, ξ) =
1

m

∑
i∈m

1

T

T∑
t=t0

[
G(t)

[
∇ρ,φ log (π (ait | sit, st)) +

Mit∇ξ,φ log
(
π
(

Ψ̇it = ψ̇it | sit, st, ait = aMN
it

))]
+ λ∇φ,ρH (sit)

]
(4.7)

In Equation (4.7), Equation (4.8) is the return, and Equation (4.9) is the entropy of agent i’s action

at timestep t. λ = 0.1 is a hyperparameter.

G(t) =
∞∑
t′=t

(
γt

′−tRt′

)
(4.8)

H (sit) = −
∑
at∈At

π (ait | sit, st) log π (ait | sit, st) (4.9)

The reward signal the agents receive follows the scheme given in Equation (4.10), and is pro-

vided to all agents on the learner team in the final timestep of the simulation. In Equation (4.10),

T is the final timestep, NR,T is the final number of agents on the antagonist team alive in the final

timestep, and NB,T is the final number of blue-team agents—the learner agents—alive in the final

timestep.

ri,T =


−NR,T if any red-team alive

+NB,T otherwise
(4.10)

This reward signal is biased towards rewarding the agents for focusing more on opponent-team

attrition than on own-team survival. While the primary metric I leverage to examine the results

of training, the score introduced in Equation (3.1), purposefully considers own-team survival to

be of equal importance as opponent-team attrition, when agents were trained with reward signals

with such equal weighting, their scores and their survival percentages indicated that the agents
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were primarily learning to run away from the opponents, rather than learn to counter them. The

reward structure, Equation (4.10), results in agents that show a willingness to risk some own-team

attrition in order to achieve opponent-team attrition, but with sufficient self-preservation so as to

still achieve good own-team survival overall.

4.3.6 Agent Initial Position Management

In an effort to enforce consistency between the trained teams’ experiences, the simulator is seeded

with the next integer from a sequence of pre-defined seeds at the beginning of each training en-

gagement such that the initial positions of the agents in training episode k are consistent between

PSCE (4-vs.-4 trained vs. GS) and PSCE (4-vs.-4 trained vs. DA) and between PSCE (2-vs.-2

trained vs. GS) and PSCE (2-vs.-2 trained vs. DA) for all k in the number of training epochs. This

seed sequencing guarantees that the 4-vs.-4 training engagements have two agents on each team

in the same positions that they are in in the 2-vs.-2 training engagements, so any difference in

what occurs in training episode k of a 4-vs.-4 engagement versus what happens in the kth train-

ing engagement of the 2-vs.-2 training procedure must be due to either differences in what the

policies-in-training have learned in their respective k − 1 training epochs, the difference in the

number of agents per team, or the team against which the learner agents are training, not due to

some agents starting in different locations between episode k’s 2-vs.-2 engagement initialization

and episode k’s 4-vs.-4 engagement initialization. To ensure that neither team begins with a signif-

icant positional advantage, the agents of one team are initialized at the same x-coordinate locations

and mirrored y-coordinate locations as the other team’s positions. Note that the seed sequencing

and initial position mirroring are also implemented in the simulation seeds employed in seeding

the test set experiments. The set of test set experiment seeds and training set seeds do not intersect.

To equip the learner agents to start on either side of the engagement arena, every two training

engagements, the learner team’s starting positions are swapped with the starting positions of the

opponent team. At test time, for each matchup of a specific trained team to a specific opponent in

a specific engagement size, the test set includes both the scenario with the trained team starting on
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the left half of the arena as well as the scenario with the trained team starting on the right half of the

arena. The results for these flipped cases are averaged together in the plots shown in Section 4.5.

4.4 Evaluation Metrics

The metrics I present for the training process include the reward received by the agents-in-training,

their score (as computed by Equation (3.1)), and the percent of the learner team that survives each

training episode. I evaluate success of trained teams in a test environment primarily via the trained

team’s score, as computed by Equation (3.1). As in Chapter 3, I also examine the percent of each

team that survives each engagement to obtain a more comprehensive picture of how the protagonist

teams achieve their scores.

4.5 Results

4.5.1 Training

Agents trained using the training scheme presented in this chapter do not show a clear increase

in reward during training, as shown in Figure 4.4a, nor do they show a clear increase in score

or survival percentage, as shown in Figure 4.4b or Figure 4.4c, respectively. The testing results

(Section 4.5.2), however, show that the learner agents gain a noticeable benefit from training and

score higher than an untrained team in most scenarios.

4.5.2 Testing

While the lack of decisive reward increase during the training of the PSCE agents does not suggest

that the trained agents learned much about good tactic selection, the results from the testing en-

gagements show that the agents learned how to select tactics and partners better than an untrained

team does, and that the policy learned is effective in engagements of sizes other than those in which

the agents were trained.
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Figure 4.4: These plots show the smoothed rewards, scores, and survival percentages for each of the
PSCE agent teams during training. The networks employed during the testing process are trained
for 1000 epochs. Smoothing was performed using a procedure adapted from TensorBoard’s plot
smoothing function [102] with a smoothing weight of 0.99.
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Performance Against Training Opponent

Teams of GS agents, which were difficult to outscore in the densest of the experiments discussed

in Chapter 3, are outscored by both the untrained and trained teams, indicating that even the simple

strategy of randomly switching between tactics has some merit. From Figure 4.5a, one can see

that the untrained PSCE agents are outperformed with respect to the protagonist team’s score by

PSCE agents trained in both 4-vs.-4 and 2-vs.-2 against GS. The largest difference in performance

between untrained and trained agents here is in own-team survival for 16-vs.-16 engagements; the

PSCE agents trained in 2-vs.-2 vs. GS have an average survival percentage of 45%, which is a

large increase over the untrained agents’ survival percentage of 36%. Both trained teams are very

capable of attriting large portions of the GS opponent teams, with generally increasing opponent

attrition as training team size increases.

The results for PSCE teams trained in either 4-vs.-4 or 2-vs.-2 engagements against DA in

engagements against DA, shown in Figure 4.6, show a general trend of overall lower scores and

survival percentages than seen in Figure 4.5. Note that the PSCE teams trained in 2-vs.-2 against

DA outscore the PSCE agents trained in 4-vs.-4 engagements against DA in both the 2-vs.-2 and 4-

vs.-4 engagements by attriting more opponents. It is feasible that, as the PSCE (2v2 tv. DA) agents

were trained in less-dense engagements, they were able to be more effective in these less-dense

engagements than the PSCE (4v4 tv. DA) teams.

Performance Scaling With Team Size

In the results discussed so far, it is apparent that the trained PSCE teams learned general good

tactics that allow them to outscore, out-survive, and out-attrit untrained agents as well as their en-

gagement opponents. Recall from Chapter 2 that one of my aims in this document is to examine

how the trained agents we examine in this chapter are effective in scaling from small engagements

to large engagements. In the smaller, less-dense engagements, as noted in Appendix A, agents

trained in 2-vs.-2 engagements against either DA or GS outperformed the teams that trained in 4-

vs.-4 engagements in both 2-vs.-2 and 4-vs.-4 engagements against either DA or GS, though their
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Figure 4.5: These plots show the scores, survival percentages, and opponent survival percentages
of PSCE agents, with the training (or lack thereof) denoted in the legend, in engagements against
GS teams. The untrained agents score more poorly than the trained agents in a number of scenarios,
especially with increasing engagement size, in contrast to how DA’s performance declined in more
dense engagements in Chapter 3.
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(c) Average percentage of DA opponents surviving against untrained, trained PSCE teams in N-vs.-N engagements ∀ N
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Figure 4.6: These plots show the scores, survival percentages, and opponent survival percentages
of PSCE agents, with the training (or lack thereof) denoted in the legend, in engagements against
DA teams. The untrained agents score more poorly than the trained agents in most cases, but the
scores and protagonist team survival metrics are overall lower than are those for the PSCE agents
trained against GS in engagements against GS shown in Figure 4.5.
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performance boost in the 4-vs.-4 engagements over the 4-vs.-4-trained teams was not as dramatic

as it was in the 2-vs.-2 engagements. In general, however, as engagement size increases, all trained

teams see a general trend of increasing score, albeit with less-dramatic increases as team size

reaches the much larger 32-vs.-32 and 64-vs.-64 cases. In the engagements against DA, however,

the protagonist team’s survival (in Appendix A, Figure A.2b) decreases as the engagement size

increases. As a DA agent without a partner acts as a GS agent until it can find a partner, however, it

is possible that the agents on the DA teams in the especially dense engagements, while suffering at-

trition, were forced to act as GS agents often enough to accidentally operate in a manner similar to

PSCE, frequently switching between tactics. (PSCE agents—especially trained PSCE agents—are

still generally somewhat more effective than DA, however, as they have learned when these tactic

switches are appropriate.) In comparing the opponent survival plots between the engagements be-

tween trained teams and DA or GS (in Appendix A, Figures A.1c and A.2c, respectively), it is clear

that, as engagement size increases, the DA teams are more effective at surviving the onslaught of

the trained teams than are the GS teams. With DA’s tendency to default to GS when unpartnered,

and considering the much smaller arena used in these experiments, it is possible that what makes

DA more difficult to attrit and outscore in the experiments in this chapter is also what I believe

is helping the PSCE agents perform well—alternating between GS and the initial phase of the

DA state machine. In the DA maneuver selection state machine, before a DA pair ever evaluates

whether bracketing or sandwiching an opponent is feasible, the agents prioritize achieving echelon

form (lining up wings abreast within their partnership 1-2 turn radii apart), even temporarily slow-

ing down slightly if necessary to assist in lining up. The brief attempts to achieve echelon form with

their temporary partner, combined with short stretches of aiming at the nearest opponent with GS,

provide the benefit of GS’s exploitation of force concentration with DA’s more position-focused

maneuvering to make these DA teams caught in very dense scenarios difficult to best. Trained

PSCE agents benefit from this tactic switching even more than the DA agents do with their tactic

switching out of necessity. Tactic switching for PSCE agents is more informed than for either DA

or untrained agents, all due to the evaluation of the policy network guiding the selection of when
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to choose GS and when to select DA. Their switching policy makes trained PSCE agents more

effective at achieving tactically-advantageous force concentration against not only the most immi-

nently-threatening opponents, but also against the adversaries providing backup to the foremost

enemy agents before these additional enemies can inflict unnecessary losses upon the protagonist

team’s agents. As seen in Figures 4.5 and 4.6, and in Appendix A’s Figures A.1c and A.2c, the

trained PSCE teams are effective, and more effective than untrained teams. Thus, I postulate that

the training scheme detailed in this chapter is effective in training agents to switch between GS

and DA’s echelon-finding sequence in such a way that concentrates the PSCE team’s force more

effectively than a GS team or DA team can. I discuss this hypothesis further in Section 4.6.

4.6 Discussion

The PSCE agents are trained by means of REINFORCE, a policy-gradient reinforcement learning

algorithm [98, 99]. This work does not seek to compare deep RL methods against one another in

the context of aerial combat; rather, I aim to show that, by structuring the inputs to the network to

evaluate action choices in terms of agent pairings, and utilizing the output from several evaluations

of agent pairings to select the action for one agent in the context of its teammates’ states, PSCE

agents are able to learn to perform well when tested against teams of DA and GS.

Interestingly, the trained PSCE agents performed well against not only opponents operating

under the tactical behavior against which the PSCE agents trained, but also against opponents

against which they did not train. This suggests that the PSCE agents did not only learn how to

select appropriate tactics and partnerships against the particular opponent battle style they trained

against, but also that they learned how to make good tactical choices in general.

In preparing for these experiments, I expected PSCE agents who selected DA to switch actions

or partners before they could complete an entire DA maneuver with a selected partner, which,

from qualitative observation of a number of testing engagements, was borne out in testing. With

the PSCE agents re-evaluating their action choices every timestep, selecting the DA action option

with the same partner for the few dozen timesteps necessary to complete an entire bracket or
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sandwich maneuver is highly unlikely. Thus, the results discussed in this document do not evaluate

how adept PSCE is at selecting when performing a bracket or a sandwich is most appropriate.

Instead, as postulated in Section 4.5, it is the switching between DA—and the brief attempt of

the newly-minted DA pair to achieve echelon formation—and GS that lines the PSCE agents (and

DA agents in especially small, dense engagements) up in a way that grants them favorable force

concentration over a broad section of the opposing force. This advantageous force concentration is

especially evident in Figure 4.7, where the blue team (PSCE (4-vs.-4 trained vs. GS), on the left) is

countering a team of GS (red team, on the right). The GS agents are maneuvering via proportional

navigation to aim at the nearest PSCE agent, and their aim angles are shown with the red lines

that intersect the red aircrafts’ centroids. The PSCE agents, whose aim angles are show with blue

lines, are aimed much more broadly as a group, but with the group’s overall aim centered roughly

on the closest opponent threat. As the simulation shown in Figure 4.7 continues, the PSCE agents

lose some of their frontmost team members, but in the process, attrit not only the foremost GS

threats, but also many of its teammates farther back in the GS swarm, preventing those farther-away

opponents from becoming more imminent threats. While very different in scenario and engagement

style, this spread of force concentration against not only the most imminent threats, but also against

other opponent-team members is similar in prioritization to the higher-opponent-threat maximizing

guard schedules that I introduce in Section 5.4.

4.7 Contributions

In this chapter, I demonstrated a deep-RL training scheme that utilizes cleverly-arranged inputs

to a neural network and unique processing of the outputs generated from multiple passes through

the network for each agent at each timestep to learn when to select which hand-crafted tactic and

when to maneuver arbitrarily instead. The agents trained with this scheme outperform both of the

hand-crafted baseline-tactic opponents as well as untrained agents, demonstrating that the agents’

training is effective. These trained PSCE agents learn to switch between the tactics available to

them based on their and their teammates’ local situational contexts in a way that achieves favorable
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Figure 4.7: An annotated still from a test set simulation (blue team won). Note that, in the annotated
cluster of agents, the blue team agents (PSCE (4-vs.-4 trained vs. GS), on the left) spread their aim
across all of the approaching red-team members, while the opponents, a team of 16 GS (on the
right, red), are aiming at the foremost PSCE agents. The trained PSCE agents are more adept at
spreading their force concentration among the opponent agents than GS.

force concentration against the opposing team as well as directs their fire across the opponent team

more effectively than either of the hand-crafted tactics could alone. These trained agents are well-

suited for intercepting a hostile swarm of enemy fixed-wing UAVs to attrit as many adversaries as

possible before they reach a high-strategic-value location. In the next chapter, I consider the close-

in defense scenario for this hypothetical high-strategic-value location by a heterogeneous team of

multirotors. The experiments in Chapter 5 are inspired by a biological site-defense scenario, and

emphasize further how agent spread and establishing local Lanchester’s-Square-Law advantage are

especially important in swarm-vs.-swarm engagements.
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CHAPTER 5

BIO-INSPIRED COORDINATION

This chapter demonstrates prioritization of force concentration advantage by a heterogeneous team

against an invading heterogeneous team via the allocation of multirotor guards to guard roles in

a biologically-inspired close-in site defense scenario. The simulations described in this chapter

emphasize the importance of team spread across the opposing force in swarm-vs.-swarm engage-

ments, as well as demonstrate some key considerations for allocation and prioritization of force

concentration in terms of agent types and the guard agents’ fuel.

Computer scientists and computational biologists frequently draw inspiration for robot and al-

gorithm design from modeling or emulating animal swarms, their abilities, and their behaviors.

Biological swarms provide a wealth of knowledge and inspiration for the modeling and develop-

ment of man-made swarms, from flocking behaviors and motion seen in shoaling fish [103–106]

and swarming locusts [107, 108]; to foraging [109–114], nest-site-location-seeking [115–122], or

fighting ants [123–129]; to bee nest defense [130–138]. The experiments detailed in this chapter

are focused around a site defense task, which is similar in some ways to the RoboFlag Drill project

defense problem for mobile robots [139, 140], where a team of defending robots attempts to de-

ter attacker robots from entering a specific region of a horizontal playing field. In the RoboFlag

scenario, all defending robots could counter all individual attackers equally effectively. In con-

trast, the work in this chapter covers the more complex problem of two types of attackers, each

type of which can only be accurately detected by one of two types of sensor, with defender robots

equipped with one enemy-detecting sensor each. By not equipping an entire defending swarm of

agents with the sensors necessary to detect both types of attackers, the heterogeneous swarm of de-

fenders is less costly to build than a homogeneous swarm of the same size with each agent having

both sensors. The results of these experiments empirically find the best allocation of these sensors
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and of the fuel that powers the robots employing the sensors given the composition of the incom-

ing adversary force. Furthermore, this chapter explores the force concentration implications of this

bio-inspired guard scheme. While some literature exists that examines battery- or fuel-aware con-

straints for multi-agent applications [141, 142], to my knowledge, I and the other authors of the

paper published on the work in this chapter [15] are the first to explore resource prioritization in

the defense of a fuel source with agents powered by (and thereby depleting) that same fuel source.

The close-in site defense scenario modeled in this chapter [15] is inspired by the allocation of

guard bees to hovering-guard and standing-guard guarding roles in colonies of Tetragonisca an-

gustula (T. angustula) in their efforts to defend their nests and the valuable resources within from

invading bees of both the same species (conspecific) and other species (heterospecific) attack-

ers [134–138]. Standing guards stand on the nest entrance to prevent conspecific non-nestmates

from entering the nest, and hovering guards hover around the nest’s entrance to identify and de-

fend against heterospecific attackers. In the experiments detailed in this chapter, I show that the

structure of the guard force deployed by T. angustula for nest defense focuses on the creation of

force concentration advantage against the attackers that have the greatest potential to harm the

guards’ colony, while still allocating enough of the guard force to defense against lower-threat

opponents to make the most efficient use of the fuel expended in guarding the fuel reservoir.

5.1 Problem Formulation

Consider the problem of defending a secured location, or High-Value Target (HVT), from a hetero-

geneous swarm of adversarial multirotor UAVs with a heterogeneous swarm of multirotor UAVs,

with the guard swarm following the two-tiered guarding structure T. angustula employ in defend-

ing their nests from heterospecific (other-species) and conspecific (same-species) invaders. I frame

this problem of defending an HVT as a value maximization problem. The HVT is a fuel reservoir

containing a specific amount of fuel, which the guard force aims to maximize at the end of the sim-

ulation. The attackers approach the HVT one-by-one and attempt to steal fuel from it, while the

guards act to intercept, engage, and attrit the attackers before the attackers reach the HVT and steal
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fuel. Guard initialization also deducts fuel from the HVT, however, so finding guard schedules

that maximize the fuel remaining in the HVT must take not only the composition of the attacking

force into account, but also the number of guards. The hypothesis explored in these experiments

is that the guarding structure employed by T. angustula causes the most damaging enemies to be

spread out across the guards and through time, giving the defending swarm a Lanchester’s-Square-

Law-type advantage against the most-penalizing attackers and providing the defenders with the

time they need to successfully counter their opponents before additional opponents can arrive to

overwhelm the guards. The simulations discussed here seek to validate this claim.

5.2 Experimental Environment

Our goal in these experiments is to investigate how the value-maximizing allocation of guards (i.e.,

both in amount and type) is affected by the potential cost of an invasion (i.e., how many adversaries

of each type are present and how much value each can individually deduct from the HVT). In these

simulations, the HVT is initialized with a specific amount of energy, V = V0, and specific events

(guard initialization, guard refueling, attackers entering the HVT) deduct from the HVT energy

reservoir; the defending swarm wishes to maximize the energy in the HVT, V , at the end of the

simulation. The initial HVT energy reservoir value, guard initialization costs, guard energy burn

rates, and attacker breakthrough penalties are given in Table 5.1

Figure 5.1 is a screenshot captured from one of these simulations and shows hovering and

standing guard UAVs, conspecific and heterospecific attacker UAVs, and the HVT. The regions in

which the hovering and standing guards and the attackers can be initialized are depicted in Fig-

ure 5.2.

To protect the HVT energy reservoir, each simulation is initialized with up to ten of each type

of guard in increments of two. Up to ten of each type of attacker may approach the HVT during the

simulation, with one randomly-selected attacker beginning its approach every 60 s of simulation

time. Guards are generated at random positions within specific bounds to mimic their biological

counterparts; hovering guards start on either side of the area in front of the HVT entrance and
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Table 5.1: Value-Related Parameters

Parameter Value

HVT Initial value V 100,000 µcal

Hovering

Caloric burn rate 1.250 µcal/s

Average guard time 3,420 s (57 min)

Initialization cost 4,275 µcal

Standing

Caloric burn rate 0.250 µcal/s

Average guard time 4,440 s (74 min)

Initialization cost 1,110 µcal

Heterospecific Breakthrough penalty 5,000, 10,000, 15,000 µcal

Conspecific Breakthrough penalty 4,275 µcal

Figure 5.1: Screenshot of an example simulation run being executed in SCRIMMAGE [95]. Blue
UAVs are hovering guards, yellow UAVs are standing guards, the green UAV is a conspecific
attacker being investigated by one of the standing guards, and the red UAV is a heterospecific
attacker.
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Figure 5.2: Diagram showing the initial caloric content of the HVT and the general regions in
which the two types of guards and the attackers can spawn in these experiments.

facing the path to the entrance, and standing guards are initialized very close to and encircling the

entrance. All attackers are initialized far from the HVT, well beyond the guards’ sensing ranges.

Approaching attackers follow waypoints to the HVT entrance that ensure that both types of guards

have a chance to sense them. If an attacker reaches the HVT, it deducts a breakthrough penalty

(see Table 5.1) from V .

A guard’s initialization cost, given in Table 5.1, is also its initial and maximum energy level;

when each guard is created, that guard type’s initialization cost is deducted from the HVT value,

and the same amount of energy is allocated to the guard agent as its initial fuel store. Guards’ en-

ergy depletes at the role-specific caloric burn rates given in Table 5.1. A guard whose energy level

reaches zero is removed from simulation. The attackers’ and guards’ actions are independent of the

HVT value. I executed Monte-Carlo simulations in this framework, varying attacker breakthrough

penalties, attacker type distributions, and guard role distributions. The results given in Section 5.4

show the average over 100 simulations for each combination of these factors.

5.3 Agent Behavior

During each timestep of the simulation, an unengaged guard checks its energy level, and with a

probability inversely proportionate to its remaining energy level, returns to the HVT to refuel. If

it does not choose to refuel, the guard queries its sensor for any potential attacker detections. If
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the guard identifies any adversaries, it selects one at random to engage. Once a UAV has survived

any encounter with a standing guard, it is close enough to the HVT entrance to enter unhindered;

thus, a guard engages its target if the target (1) is not already engaged, and (2) has not yet been in

an engagement with a standing guard. Upon engaging the adversary, both the guard and adversary

survive with independent probabilities of 0.5. The probability of an ongoing engagement ending is

0.01 at each timestep. While engaged, the guard is fully occupied, leaving the colony more vulner-

able to attack. If a guard survives an engagement, it returns to its initial position and continues to

watch for attackers.

To represent the primary foci of their biological counterparts, hovering guard agents specialize

in identifying only heterospecific adversaries, and standing guard agents focus only on identifying

conspecific attackers. The probabilities of each type of guard correctly identifying a member of

each enemy type as an adversary are defined in Table 5.2.

Table 5.2: Threat Discernment Probabilities

Guard Type Invader Type p(X = a|a)

Standing Heterospecific 0.01
Conspecific 0.99

Hovering Heterospecific 0.99
Conspecific 0.01

Note here the importance of hovering guards being capable of re-engaging adversaries that

survived prior engagements with hovering guards; though the engagements themselves are one-

on-one duels, the ability of hovering guards to quickly re-engage an attacker that survived a pre-

vious engagement with other hovering guards for as long as the attacker is alive and in the hov-

ering guards’ sensing range gives the hovering guards a force concentration advantage— a local

Lanchester’s Square Law (see Section 2.2) within the sensing ranges of the hovering guards—over

the individual approaching heterospecific attackers. Under Lanchester’s Square Law, the hovering

guards’ force strength against the heterospecific attackers against which they defend is the differ-

ence between the square of the number of hovering guards that can attempt to engage an attacker
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Figure 5.3: Results (averaged over 100 simulations per point) of the final HVT value for the sce-
nario of two low-penalty heterospecific attackers and two conspecific attackers. Note that the max-
imum, found at two standing guards and zero hovering guards, is almost the same as the HVT
value for no guards at all. Guards are not worth the cost to initialize and fuel in this very-low-threat
scenario.

minus the square of the number of attackers that can engage the local hovering guards. Hovering

guards are often capable of dispatching one heterospecific attacker before another heterospecific

attacker arrives at the HVT approach path’s start waypoint, as the attackers approach the HVT one

by one. With these enemies approaching the HVT as singletons, even a small force of hovering

guards has a strong local Lanchester’s-Square-Law force strength advantage against most—if not

all—heterospecific attackers they encounter. Standing guards, however, are incapable of exploit-

ing Lanchester’s Square Law, as only one standing guard may ever engage a specific attacker in a

duel-like engagement, and thus must be considered in the context of Lanchester’s Linear Law.

5.4 Experimental Findings

A significant factor that affects the maximizing guarding schedule for each scenario is the maxi-

mum threat penalty cost. Generally, scenarios with few attackers (up to approximately four total

attackers, with low- or mid-penalty heterospecific attackers) required little to no guard force to

maximize the value remaining at the end of the simulation. The metabolic cost of maintaining

guards to defend the HVT was not worth the low penalty incurred by the losses from attacking

UAVs. Figure 5.3 is an example of such a scenario.
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Figure 5.4: Results (averaged over 100 simulations per point) of the final HVT value for the sce-
nario of three high-penalty heterospecific attackers and four conspecific attackers. The maximum
in this case is at two hovering guards and two standing guards, but the slope of the mesh is much
steeper in the direction of increasing standing guards than in the direction of increasing hovering
guards. In such a high-overall-threat scenario, with the majority of the threat concentrated in only
three heterospecific attackers, it is of more worth to initialize and maintain a strong hovering guard
force and prevent taking the penalty from even a single heterospecific attacker reaching the HVT
than it is to initialize and fuel more than two standing guards.

Figure 5.4 shows the results for the moderate-threat case of three high-cost, heterospecific

attackers and three conspecific attackers. The results suggest that the best guard schedule for this

specific case is two hovering guards and two standing guards, but note that the decline in HVT

value as the number of hovering guards increases is much shallower than the HVT value decline

as standing guard count increases. This trend indicates that, although hovering guards are more

expensive to initialize and maintain, the large cost of even a single heterospecific attacker reaching

the HVT in this scenario makes the hovering guards worth investing in to preserve the HVT’s

value.

Figure 5.5 shows a high-threat case with eight moderate-penalty, heterospecific attackers and

four conspecific attackers, for which results indicate that the best guard schedule is to deploy two

hovering guards and four standing guards. Due to the high potential threat cost and the threat cost

being spread across many attackers, the maximum is at four standing guards and two hovering

guards. With the high number of heterogeneous threats, the standing guards’ ability to prevent

further loss benefits the protagonists. Note especially that, in Figure 5.5, there are maxima between
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Figure 5.5: Results (averaged over 100 simulations per point) of the final HVT value for the sce-
nario of eight mid-penalty heterospecific attackers and four conspecific attackers. The maximum
here is at two hovering guards and four standing guards, but the HVT takes heavy losses under
all guard schedules. In this high-threat scenario, the best guard schedule contains far fewer hover-
ing guards than there are heterospecific attackers,but shows maxima between two and six standing
guards. The cost of initializing and fueling many hovering guard UAVs is more detrimental to the
HVT value than simply allowing some heterospecific attackers to enter the HVT, while deploying
standing guards is worth their (smaller) cost.

two and six standing guards, in stark contrast to the steep decline of final V seen with increasing

standing guards in the case of Figure 5.4. In such a high-threat case, but with the threat spread

across a large number of adversaries, the standing guards’ ability to counter conspecific attackers

makes a sizable difference. Interestingly, this proportion of hovering-to-standing guards shown

in Figure 5.5 is similar to the guard proportions observed by Baudier et al. [138] and Grüter et

al. [136] at actual T. angustula nests.

5.5 Discussion

As a guard is unable to do anything else when it is engaged with an attacker, maintaining a guard

force with multiple of each type of guard is important when an attacker reaching the HVT could

cause devastating losses. It is to the defenders’ benefit that attackers approach the HVT as single-

tons; it spreads out the threat of the attackers over time, increasing the chance that an un-engaged

guard of the necessary type will be available to engage an incoming attacker, even if some guards

are already engaged. Figure 5.5 and Figure 5.4 support this conclusion, as their maxima lie at
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guarding structures comprised of multiple hovering guards and multiple standing guards. Grüter

et al. [136] found that standing guards are a larger proportion of the guarding force than hovering

guards during the majority of a day (similar to the maximizing guard proportions in Figure 5.5),

and that a half-standing-half-hovering guard force (such as the maximizing guard schedule in Fig-

ure 5.4) was more typical during a nest’s busiest times of the day; these observations were cor-

roborated by Baudier et al. [138]. The results from the presented approach are consistent with this

observation for some combinations of guard allocation and threat forces, which suggests that the

guarding structure T. angustula nests use may be influenced by energy efficiency. To the knowledge

of my coauthors on this project [15, 138] and me, we are the first to demonstrate the feasibility of

this potential motivation behind T. angustula’s guard structure in simulation [15].

Section 5.3 clarifies that the combat situation of the hovering guards and the attackers they

counter fall under Lanchester’s Square Law, and that the standing guards’ engagement of the con-

specific attackers is instead characterized by Lanchester’s Linear Law. With respect to the hovering

guards, as the attackers’ approach to the HVT is spread out over time, a guard force containing

any hovering guards has the advantage of potentially being able to engage a single heterospecific

attacker multiple times before the next attacker arrives. As only one standing guard may ever en-

gage a specific attacker, however, the standing guard force’s losses are, on average, one-to-one.

Due to the lower cost of standing guards, more standing guards may be deployed quite cheaply

to defend against conspecific attackers, but the lower-penalty threat of the conspecific adversaries

precludes the necessity of an impenetrably-large standing guard force,unless, as in Figure 5.5, the

overall threat is large and spread across enough attackers to make guarding the HVT from even

low-penalty attackers worth more investment into standing guards. The higher-threat adversaries

are countered by the more-expensive agents that are capable of exploiting their local Lanchester’s

Square Law advantage, justifying the extra expense of initializing and fueling these costly hovering

guards.
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5.6 Contributions

The main hypothesis in this chapter is that the guarding structure employed by nests of T. angus-

tula slows the advance of the most damaging attackers towards the HVT, thereby spreading these

attackers out across the hovering guards and providing the guards that can counter these attackers

with a better chance at having a local Lanchester’s Square Law advantage in engaging them. The

two-tiered guarding structure of T. angustula balances the expense of hovering guards with them

being able to re-engage previously-engaged attackers (and so being able to take advantage of the

implications of Lanchester’s Square Law). Both the results of the experiments described in this

chapter as well as the behavior of the bees that inspired these experiments support this hypothe-

sis, and emphasize the importance of spreading opponents out over one’s own team so as to gain

a force concentration advantage over them in a swarm-vs.-swarm scenario. Standing guards are

nonetheless advantageous in preserving HVT value despite their Lanchester’s-Linear-Law combat

style and the low penalty of the attackers against which the standing guards defend, as evidenced

by the maxima of Figures 5.4 and 5.5. Nonetheless, for both standing and hovering guards, most

maxima in the results schedule fewer guards than there are total attackers, implying that, as the

members of the guarding force are powered by the same commodity they are defending, it is usu-

ally advantageous to try to prevent some theft from the HVT by both types of attackers, but also to

to expect and accept that some losses will occur as well rather than spend large quantities of fuel

deploying a guard force large enough to constantly prevent any attackers from reaching the HVT

at all.

In this chapter, the deployment of the most costly guards provided a strong force-concentration

advantage against the most threatening opponents by spreading them across the high-cost guards,

but cheaper guards operating under Lanchester’s Linear Law were still deployed as well to shore up

the overall defense structure against less-threatening adversaries. This raises a point of emphasis

with respect to own-team spread, opponent spread, and force concentration: exploiting such a

Lanchester’s Square Law advantage against a group of enemies is most effective when force is
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not only concentrated at the highest-priority threat (the foremost GS agents in Figure 4.7, and the

heterospecific attackers in this chapter), but is also distributed in such a way that lower-damage

or lower-priority threats are attrited before they exact losses on the protagonist team that cause it

to be less effective against the enemy force as a whole (protagonist team members being attrited,

or, specific to the current chapter, losing fuel to continue refueling hovering and standing guards).

As demonstrated throughout this dissertation, it is likely that, in engagements against aggressive

teams of agents, some protagonist-team losses are unavoidable in larger engagements if the blue

team wishes to attrit opponent team members. The conclusions and tenets of force concentration,

own-team spread, and opponent-team spread I have elucidated in this dissertation are beneficial

for ameliorating these necessary losses to the protagonist team in engagements between either

fixed-wing UAVs or multirotors.
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CHAPTER 6

PRACTICALITIES: LIMITATIONS AND FUTURE WORK

In this dissertation, I have presented schemes for engagement of opponent teams of fixed-wing

UAVs as well as a bio-inspired approach for close-in site defense. The experiments demonstrating

these approaches were conducted in simulation, however, and are thus constrained in their appli-

cability due to assumptions made during simulation construction. To deploy such approaches on

actual aircraft, many of these assumptions will need to be dropped and limitations will need to be

overcome. In this section, I cover the major limitations and postulate how they might be overcome

or sidestepped, as well as discuss how to approach dropping some unrealistic assumptions.

6.1 Fixed-Wing Aircraft Approaches: Addressing Limitations and Future Directions

The fixed-wing aircraft simulated in the experiments in Chapter 3 and Chapter 4 employ simplified

aircraft damage and weapon models, are constrained to the horizontal plane, are equipped with

perfect, non-noisy sensors, and can communicate infallibly. Furthermore, the PSCE agents detailed

in Chapter 4 train against simulated opponents, when in reality, no antagonist team would willingly

provide their agents’ behavior model to the protagonist team for them to train against, and would

likely try to frustrate the protagonist team’s training efforts or enter engagements with different

behaviors or capabilities in an attempt to render the PSCE agents’ training useless. Here, I present

potential future work that aims to explore the performance of PSCE agents in environments in

which these assumptions are dropped or made more realistic.

6.1.1 Addressing Aircraft Damage Model and Weapon Model Limitations

The agents in the experiments detailed in Chapter 3 [13] and Chapter 4 all ignore friendly fire,

collisions between aircraft, and make the assumption that a single successful shot from one aircraft
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to its target destroys the target. Further simplifications include the details of the weapon model

itself. In preparing to test PSCE agents in live-flight experiments with actual weaponry, one would

ideally select the weapon the real-world aircraft will be employing in live-flight experiments, then

model that weapon in simulation for further testing. As the types of weapon employable in live-

flight conditions are strongly dependent upon the exact type of airframe being utilized, I cover

only the generalities of the damage and weapon model simplifications below that would need to be

addressed in the process of preparing PSCE agents for live-flight live-fire experiments.

In modeling damage to aircraft in the experiments detailed in this dissertation, all weapon

models (cannon model for the fixed-wing experiments; duel engagement model for Chapter 5’s

bio-inspired approach to close-in site defense) assume that a single shot that hits a target destroys

the target, that friendly fire has no effect, and that all agent attrition is the result of opposing team

fire—aircraft can pass through one another without worry of collision or damage. With actual

aircraft, the lethality of a successful fired shot depends not only on the type of weapon that fired the

shot, but also on what part of the target it strikes. A shot that clips an agent’s wing may decrease

that agent’s agility somewhat, but is less likely to disable the aircraft than a shot that strikes a

more crucial part of the airframe, such as a propeller motor or compute board. In the fixed-wing

simulations detailed in this dissertation, an aircraft is attrited if it is hit by a single shot, and that

shot may hit anywhere within a 2 m radius of the target aircraft’s centroid. For training and testing

agents in more realistic conditions in which not all damage is lethal and some shots are more

detrimental than others, partial damage to an aircraft could be estimated assigning so-called Hit

Points (HPs) to aircraft upon their initialization, and shots that hit closer to an aircraft’s centroid—

where the most vulnerable components would likely be located—would detract more HP than shots

that hit the aircraft further from its centroid. Including friendly fire as another way for an agent to

lose HP would further add to the realism of this potential future work. Potential future work also

includes training PSCE agents in simulated environments in which collisions can occur and can

damage or destroy aircraft, with the number of HP deducted from aircraft involved in a collision

is proportional to the relative velocity of the aircraft in the collision. I predict that agents trained
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with the conditions of HP-based damage, allowing multiple hits per agent, and with collisions

and friendly fire inflicting damage will learn to maneuver more conservatively and precisely, and

will also find ways to switch tactics or manipulate their maneuver actions in ways that can take

advantage of these altered damage model components, e.g. learning to maneuver in ways that

cause opponents to collide with one another. The baseline tactics, especially GS, would require

some modification in order to stay competitive in collision-capable engagements, as GS agents

tend to cluster together (and collide) as they approach an opponent. For such potential future work,

I propose equipping GS and DA with collision avoidance behavior (e.g. [143]), and re-training

PSCE agents with these modified GS and DA behaviors as selectable actions.

Which agent a firing agent hits with its fire is, in these simulations, determined by the firing

agent; the firing agent attempts to fire at an agent with a specific ID number. With this aiming

mechanism, only the agent with the ID matching that that the firing agent is aiming at will be

affected by the fire if the shot is successful, even if other agents are within the firing agent’s Weapon

Engagement Zone (WEZ). For example, if agent 5 is in agent 1’s WEZ, agent 1 can specifically

fire at agent 5. If agent 1 fires at agent 5 while agent 4 is directly between agent 1 and 5 (and is

therefore also in agent 1’s WEZ), agent 4 is completely unaffected by agent 1’s fire. Additionally, if

teammate agent 2 is in agent 1’s WEZ when agent 1 fires, agent 2 remains completely unaffected,

as friendly fire has no effect in the simulations detailed in this dissertation. For more accuracy in

weapon-employment aspects of the engagement types explored in this dissertation, potential future

work includes dropping the assumptions of friendly fire being ineffective and agents being able to

specify at which agent within their WEZ their fire is aimed. More accurate modeling of where on an

aircraft a successful shot hits and what impact that damage would have on the aircraft—rather than

assuming that a single shot that hits an aircraft takes it out of the engagement completely—would

also increase the accuracy of simulated experiments.

Under the weapon model employed in Chapter 3 [13] and Chapter 4, probability of kill decays

as a function of the distance between the firing aircraft and its target, and goes to pk = 0.0 upon

the distance between firing aircraft and its target being greater than a maximum firing distance.

84



Probability of kill is a common simplification of whether a fired weapon destroys its target [64,

65, 68–71]. The assumption that pk suddenly drops to 0.0 at a fixed maximum WEZ distance is a

simplification that would be dropped if testing for deployment in a realistic situation. Furthermore,

due to the relatively close range in which the experiments in Chapter 3 [13]— and even moreso

in Chapter 4—are conducted, the weapon model in those experiments assumes that a fired shot

that hits its target will do so instantly. Depending on the weapon modality selected, the time-of-

flight of a fired shot may differ based on various factors, but is highly unlikely to be instantaneous;

future work includes testing with the time-of-flight of fired shots dependent upon the distance

between firing aircraft and target. Gravity and air resistance also affect fired rounds, in contrast to

the weapon model of the fixed-wing experiments, in which each fired round is assumed to follow

a straight-line path. Realistic weapon model testing should take these weapon-specific factors into

account.

6.1.2 Three Dimensional Environment

Aircraft that operate in three dimensions—as non-simulated aircraft do—must take care to ma-

neuver in ways within the physical capabilities of their aircraft. Sequencing maneuvers in a way

that allows the aircraft to remain stably aloft is much more complex in three dimensions than in

two; nonetheless, for practical usage in actual aircraft, PSCE agents must be capable of exploiting

within-team coordination in 3D and recognizing situations in which various tactical behaviors are

appropriate. No adversary with a swarm that can operate in 3D would willingly limit their own

UAVs to the 2D plane just so PSCE agents could counter them. Furthermore, the depth of tacti-

cal intricacy of 3D dogfighting is far deeper than that of 2D dogfighting—practical PSCE agents

should be capable of exploiting a potential energy advantage or opportunities in which the protago-

nist team could confuse opponent UAVs, e.g. by having some protagonist aircraft engaging enemy

aircraft within easy sight of the enemy aircraft while other protagonist-team teammates attack from

high in the sky with the sun behind them to “hide” their approach from the antagonist team.

The chief concern in equipping PSCE agents for operation in three dimensions is avoiding
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states that can lead to crashes or other causes of aircraft inoperability. For these safety concerns,

I propose that each aircraft perform checks for safe flight each timestep before it begins its action

selection procedure. Any aircraft that determines in a given timestep that it is in or approaching a

state that requires emergency recovery bypasses that timestep’s action selection process, informs

its teammates that it is unavailable for partnership in the current timestep, and instead selects an

appropriate pre-scripted emergency recovery behavior. As these aircraft are unmanned, however, it

is possible that sacrificing an airframe to perform a risky maneuver to confuse adversaries or to act

as a decoy may be advantageous, so further experimentation, testing, and development would ben-

efit the selection of these safe-flight-condition thresholds and the conditions under which tactical

needs could override them.

Emergency recovery is not the only way in which expanding to three dimensions might be

seen as problematic, however; as explored in the work of Ure and Inalhan [144–146], fixed-wing

UAVs performing aerobatic maneuvers cannot always directly transition from one complex 3D

maneuver to another without intervening control actions to preserve stable flight. For PSCE agents,

this maneuver sequencing issue is handled by the tactical behavior action options from which

agents select each timestep; each tactical behavior is treated as a self-contained black-box policy

for agent behavior. So long as each tactical behavior has appropriate contingencies for how an

aircraft should behave in arbitrary states, PSCE agents should be able to learn to switch between

tactical behavior actions meaningfully.

An additional concern to address in adapting PSCE agents for three dimensions is their state

representation. The PSCE state representation, described in Section 4.3.2, is a discretization of a

bird’s-eye view of the observing agent and the agents surrounding it, with multiple 2D channels

containing various quantities of the agents represented therein. In expanding the training and test-

ing of PSCE agents to 3D, this state representation necessarily grows larger, and each of what

are channels in the 2D-flight-version representation becomes a discretized prism in the 3D repre-

sentation. This expansion in dimension naturally necessitates further hyperparameter tuning—how

far above and below the ego agent to extend the 3D state representation, the size of the bins of the
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height aspect of the discretization, whether the bin size for the horizontal plane discretization needs

to change to provide additional precision to handle teammates and opponents with more agility, and

so on. With such a large state representation for each agent, the computing resources—especially

GPU memory—for training 3D PSCE agents increases dramatically.

6.1.3 Limitations on Specific Tactical Behaviors

As mentioned in Section 3.2 [13], DA primarily flies at its cruise velocity—only allowed to briefly

slow down to achieve echelon formation with its partner or as a part of a precise part of a coordi-

nated maneuver—and GS only flies at its cruise velocity. The implementation of DA employed in

these experiments only utilizes tactics that take place within the horizontal plane. Naturally, upon

extending the problem into three dimensions, aerial combat becomes much more complex; many

more factors influence the outcome in a 3D engagement than in 2D, even just between two aircraft.

To take full advantage of the 3D environment, DA would require expansion to utilize 3D pair-

wise-coordinated maneuvers, and would also need further refining for DA agents to make tactical

decisions regarding their own potential energy and velocity, and to do so in the context of their cur-

rent partner’s and opponent’s altitude and velocity. GS is equipped to fly in three dimensions, but in

its current implementation, it does not alter its velocity; to take full advantage of three dimensions

and the ability to exploit a potential energy advantage over its opponents, GS would need to be

altered to speed up and slow down as appropriate to pursue its chosen target. These enhancements

to GS or DA would provide PSCE with more flexibility in moving to the 3D space. Alternatively,

PSCE agents could be modified to leverage tactical doctrine implementations besides GS or DA;

tactical doctrines that incorporate maneuvers that take advantage of potential and kinetic energy

advantages over opponents and are a more natural fit for a three-dimensional environment. Even

PSCE’s maneuver action option would need to be altered; instead of the continuous branch of the

policy network outputting the mean of a yaw rate setpoint distribution, it would output means for

distributions that would be used to select the roll rate and pitch rate setpoints of the aircraft.

An additional area of future work with respect to the specific behaviors employed by the PSCE
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agents introduced in this dissertation is when each behavior is selected by PSCE agents. In fu-

ture experiments between PSCE agents and various opponents, recording exactly when in each

engagement each agent selects which behavior, and comparing these behavior selection choices by

trained teams to behavior selection choices made in similar scenarios by untrained PSCE agents

has the potential to be a fascinating realm of insight into exactly what the PSCE agents learn dur-

ing training and what in their decisionmaking process allows them to outperform their untrained

counterparts. Such data would also provide further insight into how the behaviors selected change

when other factors, such as limits on communication, sensing, or which agents’ state representa-

tions a PSCE agent may leverage during action selection. Limits on sensing, communication, and

partnership are of especial interest for practical application of PSCE-trained agents, even in the

absence of this additional behavior-selection-timing data.

6.1.4 Sensing and Communications

Another area of unrealistic aspects of the fixed-wing aircraft experiments detailed in this docu-

ment is perfect, noiseless sensing and communications. The sensing of other aircraft is simulated

as a simplified generic “aircraft sensor,” and is given a wide range (1 km) in which it provides

non-noisy exact positions of aircraft. In reality, this aircraft sensor functionality would likely be

replaced by a combination of sensors and processing functionality. If communications remain reli-

able and feasible, agents on a team could obtain their own positions in the world via GPS, estimate

the state information of nearby adversaries (discussed later in this section), and communicate this

information to their teammates; With some modern fighter aircraft protocols, such as those with

which the F-35 Lightning II is equipped [147], it would be simple to share state representations or

other data about one’s surroundings with one’s teammates for evaluation. If such a comprehensive

communication protocol is not available (such as may be the case on small, simple Commercial

Off-the-Shelf (COTS) or Government Off-the-Shelf (GOTS) UAVs), communicating entire state

representations between all teammates may be infeasible, and agents may need to limit themselves

to sending shorter messages about what they sense so their teammates can reconstruct their state
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representations locally to run the PSCE action selection procedure. As each agent operates based

on its own and its team members’ ego-centric state representations, however, PSCE reduces or

eliminates the need for agents to come to a consensus on an inertial-frame world view of all agents

in the engagement for the purposes of decisionmaking [148]; if each agent communicates its ego-

centric state representation to its teammates, all agents can employ PSCE to make action decisions.

If communication between teammates is limited to within some range around each agent, though,

the problem arises that agents on a team must not only make decisions on what action choices

are tactically advantageous, but also whether those action choices will disrupt the connectivity of

the team’s communication network [149, 150]. Possible future work includes further investigation

into the incorporation of mutual information into the reward structure or state representation so

that agents can include it in their decisionmaking process, or modifying the training framework

to include mutual information in other ways [93, 151]. Mutual information may also be a fruitful

metric with which to evaluate the performance and behaviors of trained agents at test-time. Tra-

ditional radio/wireless communications, however, may be superfluous and even detrimental to the

protagonist team—leveraging radio communications in the presence of adversary team members

is risky, even when the adversaries cannot understand some or all of the communicated data. An

enemy force intercepting an encrypted message transmitted from one protagonist-team aircraft to

another may not be able to decrypt the message, but can still uncover a large amount of information

from the message itself and the manner in which it was intercepted. A single message transmitted

between two members of the protagonist team that is intercepted by the enemy force reveals to the

enemy force that:

• Some contingent of the protagonist team is nearby,

• This protagonist team force contains more than one agent (hence their communication), and

• Some information about each communicating agent’s proximity and bearing relative to the

location at which the enemy intercepts the communication.

Thus, for the most practical application of PSCE agents in live-flight and especially live-fire sce-
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narios, and especially when the protagonist team would gain tactical advantage from the element

of surprise, the protagonist team agents must each be capable of sensing with enough range and

accuracy to estimate each other’s state representations, and perform any crucially-necessary com-

munication with radio silence.

As in all but friendly competitions [2, 40, 152, 153] with opponents, one cannot expect the

opponents to divulge their own positions to the protagonist team, the protagonist team needs to

be capable of sensing adversary agents and estimating their state information in order to construct

their own and their teammates’ state representations for decisionmaking. For the sake of simplic-

ity, in this section, assume that the protagonist team UAVs are equipped with a number of cameras

and the processing capability to identify and track hostile and friendly agents all around the agent,

but exactly what sensing equipment might be employed by the aircraft is dependent on what the

aircraft is capable of carrying and powering, what the onboard compute resources are capable of

processing quickly enough for decisionmaking, and the ongoing evolution of sensing and vision

capability. Regardless of the exact sensor modality, all sensors are noisy to some degree, and no

sensor in the real world is omniscient. The aircraft on the protagonist team need to be capable

of handling noisy sensor data, as well as making decisions based on sensor data from within a

limited range of the sensor’s location. A number of methods for estimating the state of objects

based on noisy observations of those objects exist [154, 155]; the implementation details of such

filtering algorithms within the context of making the application of PSCE practical are important

future work, but are outside the scope of this dissertation. Assume that, for the aircraft an agent can

observe with its sensors, the agent can construct a reasonably-accurate estimate of the state rep-

resentation detailed in Section 4.3.2. Even with the protagonist team agents able to independently

and autonomously estimate state representations of the senseable agents around themselves, and

even if the protagonist team chooses to communicate their state representations with the team-

mates they can sense, the question remains: do PSCE agents whose sensing range—and therefore

state representation size—is limited have sufficient information to make good tactical decisions?

To begin answering this question, I train modified PSCE agents; these agents are the same as the
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agents for whom results are presented in Chapter 4, Section 4.5, except their state representations

are only 200 m-by200 m, and each PSCE agent may only evaluate state representation pairings

with teammates who fall within the evaluating agent’s state representation region. For simplicity

of implementation, the DA and GS target selection procedures are allowed to retain their original

sensing capabilities; thus, PSCE agents that select DA or GS may target opponent agents within

1,000 m of themselves. As discussed in Section 4.6, however, with PSCE agents re-evaluating their

actions every timestep, it is highly unlikely that a pair of DA-acting PSCE agents aiming a bracket

at an opponent 1,000 m away will continually select DA with each other for long enough to see that

bracket maneuver through to the attrition of that same opponent. A DA pair under PSCE will likely

only stay partnered long enough to achieve echelon formation with one another; PSCE agents are

more likely to fire at opponents opportunistically or while executing GS, negating much influence

of DA’s target selection logic. Due to PSCE’s frequent action switching, then, the partnership eval-

uation limit distance is the most influential in a PSCE team’s effectiveness. As shown in Figure 6.1

and Figure 6.2, in engagements against DA and GS, PSCE agents trained with this evaluation limit

performed similarly to teams trained with the larger state representation size and no limits to po-

tential partner evaluation. This trend does appear to start to break down, however, for PSCE (4v4

tv. GS, 200m eval. lim.) when team size reaches 16 and the trained PSCE team scores only slightly

higher than the untrained agent team. Note that engagements against teams that the PSCE agents

did not train against are included in the plots shown in Figures 6.1 and 6.2, which are also discussed

(without the sensing- and evaluation-limited cases) in Appendix A.

In the results shown for sensing- and partner-evaluation-limited agents shown in Figures 6.1

and 6.2, it is apparent that the PSCE teams are relatively unaffected in their performance against DA

(Figure 6.2), but against GS (Figure 6.1), not only does protagonist team survival (and, to a lesser

extent, score) decline as team size increases, but PSCE (4v4 tv. GS, 200m eval lim.), while still

outscoring its GS opponent, shows a much stronger pattern of decline than does its non-evaluation-

limited non-limited-sensing PSCE counterpart. Especially against non-coordinating teams such

as GS, further testing and development would be beneficial to mitigate the potential problems
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lack thereof) denoted in the legend, in engagements against GS teams.
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associated with less-than-perfect sensing and limited sensing ranges.

Further experimentation with sensing-limited agents constructing state representations from

noisy data for both an individual agent and its senseable teammates will be required to determine

how PSCE agents could best operate in communications-limited or even communications-denied

environments with imperfect sensing. In steps towards practical application of PSCE agents in

communications-limited environments, I postulate that paired PSCE agents executing DA could

potentially run an estimation of their teammates’ decision processes locally to attempt to determine

what stage of DA their partner is in, but this approach is complicated by each agent not being able

to sense everything that its partner can, and thus potentially not reaching the same evaluation results

for its partner as its partner does. As an alternative, as sensing ranges of the agents are limited in

these cases, it is reasonable, albeit potentially somewhat error-prone, to instead leverage visual

signals to communicate any necessary small messages for coordination in a radio-silent manner—

wing wags, flashing LEDs in pre-arranged patterns, etc.

6.1.5 Mitigating Adversary Deception

These measures for handling practical limitations such as restricted communications and noisy,

limited-range sensing show that there is a path forward towards deploying PSCE agents in live

flight, all of these mitigating measures assume that the opponents the PSCE agents are training

against or facing at test time are truly capable of inflicting damage and are operating under a static

policy. Problematic assumptions about the behavior of the opponent teams yet remain, however;

thus, in additional steps towards practical deployment of PSCE agents against adversarial swarms, I

present potential approaches to ameliorate the potential issues of adversary teams behaving in ways

that confuse the training of PSCE agents, as well as heterogeneous enemy teams and adversaries

that can deploy decoy agents.
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Pathological Training Opponents

The training of the PSCE agents in Chapter 4 occurred purely in simulation, and against opponent

teams that operate under a static, non-learning hand-crafted policy. Thus, the question naturally

arises: how would PSCE agents fare if trained against a learning opponent team? Furthermore,

could a learning opponent team change its behavior from epoch to epoch in such a way that the

PSCE agents’ policies would serve them poorly in test engagements? And, finally, if the opponent

team is switching its behavior from epoch to epoch, is there a point at which the protagonist team

does not gain anything from further training against this unpredictable opponent team?

As mentioned earlier in this chapter, real-world adversaries would not be willing to provide

information on their UAVs to the protagonist team for the sake of the protagonist team’s advan-

tage. Given that PSCE agents train in simulation, while I showed that the policies learned by the

trained PSCE agents learned strong tactics that generalize well to at least one other enemy team

tactical behavior, it would perhaps benefit the protagonist team to train during live engagements

to gain a stronger understanding of how to counter a specific adversary team. An enemy, however,

would not sit idly by and allow its agents to keep a static policy against which the protagonist

team could train and learn to best. If the adversary agents are also learning while in engagements

against the protagonist team, is there a means by which the protagonist team can tell when it has

learned “enough”? Is there a point in training in which it no longer benefits the protagonist team

to continue training against the adversary team? These questions are difficult to answer; as Smith

et al. discuss in some of their Learning Classifier System (LCS) work, meaningfully measuring

the effectiveness of one learning team when comparing it to another learning team is especially

difficult [46]. Naturally, results from tests between agents employing various versions of the pro-

tagonist team’s policy and a baseline-tactic team will give some quantification of the protagonist

learner team’s improvement, but whether that improvement in performance against a baseline team

truly translates to improvement against an adversary team of unknown policy is more difficult to

state conclusively. Comparing two learning teams’ performance invites comparison to two-player

zero-sum games, and indeed, game theory is an apt framing of some learning frameworks, such as
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Generative Adversarial Networks (GANs) [156]; the two neural networks, the Generator and the

Discriminator, each select “plays” (network weights) each “turn” (training epoch) in an effort to,

for the Generator, prevent the discriminator from telling a true output from a false one, and for

the Discriminator, to correctly identify whether the Generator’s output does or does not belong in

some category. Against a pathological learning adversary team—one that aims to behave in ways

that frustrate and confuse the protagonist team’s training—I believe that there may indeed be a

point at which the protagonist team may be unable to learn any new useful data, particularly if the

adversary team changes its behavior from engagement to engagement in ways that force the PSCE-

agent policies to operate in local maxima. In a step towards circumventing this issue, I propose that

deployed PSCE agents maintain a known-good backup of their network weights that the agents can

revert their policy networks to if the protagonist team finds themselves averaging fewer opponent

attritions or more losses than they have in previous engagements, suggesting an altered opponent

policy, a confused update to their own policy since the most recent engagement, or both. Alterna-

tively, it may be beneficial to alter the structure of the training framework to include a critic that,

each epoch, trains from data selected randomly from a replay buffer containing a variety of past

experiences’ state representations, actions, and rewards; this approach is commonly leveraged to

ameliorate the effects of catastrophic forgetting—when a neural network “forgets” what it learned

from past experiences when it trains on newer data [157]—and would assist the agents in contin-

uing to learn tactic selection in a way that generalizes well against a variety of opponents. With

these measures, while PSCE agents training against pathological opponents may not always be

able to improve their policy by training against the opponents, PSCE agents should at least retain

a good policy that works well and generalizes to handle a variety of swarm-vs.-swarm situations

regardless of how the opponent team attempts to confuse their training.

Decoys and Heterogeneous Adversary Teams

In the fixed-wing experiments detailed in this dissertation, the adversary team is assumed to all

be using the same policy for the entire engagement. In adjusting PSCE agents for live-flight de-
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ployment, however, one must consider the preparedness of trained PSCE agents for countering

teams of agents with heterogeneous behavior, as well as teams that deploy decoy agents to distract

the protagonist team’s members. As shown in Appendix A and Figures 6.1 and 6.2, PSCE agents

trained against either GS or DA learn generally good tactics that perform well against teams for

which the PSCE agents were not trained. While that does not automatically mean that the trained

PSCE agents will definitely perform well against a mixed-behavior team, it is a good indicator

that the trained PSCE agents are likely to be well-equipped against unknown teams, especially if

the (reasonable) assumption is made that the opponent team’s objective is to attrit members of the

protagonist team. Currently, PSCE agents have no way of discerning different types of opponent

team agents from one another, e.g. decoys vs. opponent agents that can truly attack. Thus, trained

PSCE agents would be vulnerable to the deception of an adversary team that deploys decoy agents.

Assuming that decoy opponent team aircraft would be launched from an existing opponent team

UAV, and would follow a much simpler flight pattern than the non-decoy adversaries, however,

I hypothesize that it would be feasible to pre-emptively train PSCE agents against simulated ad-

versary teams that deploy decoys that fly with simple non-aggressive flight patterns and expect

somewhat better results than could be expected than if a team of GS or DA were pitted against

the decoy-deploying team. To improve PSCE-like agents training to perform truly well against

decoy-deploying teams, however, I postulate that the agents will need to train in the context of

more than just the current timestep’s state representation pairs. To this end, I propose incorporat-

ing more complex architecture elements into the training of PSCE-like agents, such as training

with a critic network, and perhaps equipping the critic network with Long Short-Term Memory

(LSTM) cells [90] to allow the critic to learn the relationships of the behavior of active adversaries

and their deployed decoys over multiple timesteps and train the agents accordingly.

6.1.6 Further PSCE Training Improvements

Additional enhancements that could be incorporated into the process of training PSCE agents in-

clude testing alternate network architectures and training algorithms, hyperparameter tuning, test-
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ing alternative reward structures, including additional information in the state representation, and

recording additional metrics for more detailed evaluation of performance.

In Chapter 4, I test only one policy network architecture, and only train that policy network

with REINFORCE. Potential future work includes comparing agents trained with REINFORCE

to agents trained with other deep multi-agent RL algorithms—potentially algorithms that provide

security against catastrophic forgetting—and further training and testing with additional policy net-

work architectures. Still, the results obtained with my REINFORCE-trained architecture in Sec-

tion 4.5 show that the fundamentals of the training framework and input/output structuring are

effective.

Further improvements to PSCE agent performance may be possible through additional efforts

into hyperparameter tuning, though such tuning adjustments may also be specific to particular

deployment scenarios or aircraft platforms—hyperparameter tuning is, debatably, more art than

exact science. Key hyperparameters to tune further include the minimum and maximum values

of the entropy coefficient of the performance measure gradient estimate function, as well as the

threshold value for the condition of increasing the entropy coefficient and the factor by which it

is increased. This would adjust how much the agents-in-training value the entropy of their action

choices with respect to the other terms of the performance measure gradient estimate.

Additional enhancements to the training procedure include testing alternate reward structures

and additional refinements to the state representation. As mentioned in Section 4.3.5, the reward

currently in use for training PSCE agents is biased towards encouraging the protagonist team to

attrit opponents, and only rewards the protagonist team with positive rewards if all opponents

are attrited. I explored training with less biased reward structures, but found that those alternate

reward structures (especially in the various structures I tested in which own-team and opponent-

team attrition were rewarded with equal positive and negative reward) resulted in the trained agents

focusing on learning to evade the antagonist team agents rather than attrit the antagonists. For the

sake of simplicity, I kept the same reward structure throughout the training of the agents tested in

Chapter 4, but promising potential future work could include a training curriculum approach in

98



which agents are trained with the reward structure described in Section 4.3.5 for a few hundred

episodes and then trained with a less-biased reward structure for another few hundred episodes, or

alternates reward structures every episode. I predict that this would train the agents to be some-

what more evasive and conservative, but depending on how the trained agents would be deployed,

more-evasive agents may be beneficial (e.g. when conducting missions that are primarily intended

for reconnaissance to learn about opponents over opponent territory rather than to intercept and

attrit opponents). In addition to the mutual information reward scheme concept presented earlier,

incorporating a small reward for agents that choose to coordinate with a partner, and particularly

partnered agents who select the same partner agents multiple timesteps in a row, is a potential area

of future work experimentation. With the current PSCE neural network architecture, the PSCE

agent does not have any way of letting its partner in the previous timestep influence its current

timestep decision. To equip agents with the information they need to learn whether coordinating

with the same partner for multiple timesteps in a row earns additional reward for the team, I pro-

pose adding a masking layer to the state representation to mark the ego agent and, if the ego agent

selected DA in the previous timestep, to mark its partner in the previous timestep.

6.2 Multirotor Approach: Addressing Limitations and Future Directions

In Chapter 5, I introduce a bio-inspired defense scheme that one could imagine being utilized as

the last line of defense of a secure location. Based on the success of PSCE agents in learning to

switch between DA and GS behaviors, I propose potential future work in applying PSCE’s paired

state representation decisionmaking in application to selecting guard roles in the bio-inspired de-

fense framework of Chapter 5. The experiments presented in Chapter 5 assume that the number

of each type of adversary attempting to breach the HVT is static for a given engagement scenario,

but in real-world application, that assumption may not always hold— enemies may send reinforce-

ments. Enabling agents to learn to switch between performing hovering guard and standing guard

roles, and to learn when to signal for reinforcements from the HVT, would allow for much greater

flexibility in this defense scheme. With the defending agents staying in the general vicinity of
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the location they are protecting, and all staying relatively close to one another, the defenders could

rely on their own individual sensing to construct the state representations of themselves and of their

teammates and could use visual signals to perform any necessary communication (e.g. to request

reinforcements from the “nest” when guards are attrited). Thus, this close-in defense scheme is

suitable for comms-denied scenarios, so long as the UAVs have sufficient sensor coverage around

themselves. As the guards for the bio-inspired scheme must regulate their fuel level, if a PSCE-like

scheme were to be used to enhance the bio-inspired defense scheme, an agent’s fuel level could

be incorporated as a part of its state representation to assist in making decisions about what role

to take, when to refuel, and when to signal for reinforcements. The PSCE paired state represen-

tation evaluation formulation for action selection is especially relevant when including an agent’s

fuel level in its state representation—guards could leverage this knowledge of their own and their

fellow guards’ fuel levels to decide who should refuel when so as to maintain sufficient guard cov-

erage during each guard’s refueling, though in a comms-denied environment, an agent would need

to either incorporate only an inexact estimate of its potential partner’s fuel level based on what

could be inferred from the teammate’s flight time and standing time, caloric burn rate, and perhaps

some inexact fine-tuning of this estimate from visual signals from the teammate in question with

regard to its fuel level. With that difficulty, rather than including an agent’s exact (or inexact) fuel

level in its state representation, I propose, for deployment in a comms-denied environment, that

the state representation of an agent instead be augmented by three values: the most recent time

the agent refueled, how many seconds of hovering guard duty the agent has performed since their

most recent refueling, and how many seconds of standing guard duty the agent has performed since

their most recent refueling. This arrangement of including hovering and standing times and refuel

timestamps in each agent’s state representation makes the assumptions that an agent that refuels

will always collect its maximum amount of fuel from the HVT (and that some entity aside from the

guards guarantees that the HVT contains adequate fuel to refuel the deployed guards), and, for the

purposes of arranging coordinated agent role allocation and refueling trips, the fuel consumption

rates are consistent across all guard agents, with allowance for the different fuel consumption rates
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of hovering guard duty and standing guard duty. As each agent is also evaluating its own state

representation in the process of evaluating those of its teammates, however, I propose that each

agent have emergency override behaviors that are dependent upon a that fellow guards could not

visually discern—true fuel level. If an agent’s internal sensing of its fuel level is inconsistent with

how long the agent is able to perform either hovering or standing guard duties, the agent would

visually signal that it was unavailable for partnership to its teammates, then execute its emergency-

go-home behavior to return to its deployers for repair. If the assumption that the entities deploying

the UAVs maintain sufficient fuel in the HVT is dropped and an agent recognizes that it was not

able to fully refuel from the HVT (which would indicate that the HVT itself needed refueling), the

agent would, again, visually signal to its teammates that it was unavailable for partnership evalua-

tion, then return to safety inside the HVT, where it presumably could communicate the emergency

lack of fuel to the entities deploying the UAVs.

6.3 Conclusions

Overall, while there yet remains a large number of improvements that could be made to prepare

PSCE agents to be trainable and testable in live flight, there are paths forward to address each of

these limitations in future work. The enhancements detailed in this chapter pave the way forward

to equipping future PSCE agents to be evaluated and eventually deployed in practical application.

In this dissertation, I have introduced defense schemes for intercepting and attriting far-off

swarms of adversary fixed-wing UAVs with a swarm of fixed-wing UAVs, as well as for the fuel-

efficient close-in defense of a secure location with a heterogeneous team of multirotors. These

schemes have only been evaluated in simulation, but have shown themselves to be effective within

that framework. While the practical limitations separating these defense schemes from deployment

in live-flight and even live-fire environments are not trivial, I believe that the future work to make

the defensive arrangements presented in this dissertation to be achievable, and well worth the effort.
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CHAPTER 7

CONCLUSIONS

7.1 Contributions

In this dissertation, I explore tactics and coordination strategies for engagements between fixed-

wing UAVs and how best to leverage existing coordinating tactics in aerial combat scenarios.

My investigation begins in the realm of aerial combat engagements between teams of fixed-

wing UAVs (in Chapter 3 [13]), where I introduce two aerial combat tactical behaviors that are

inspired by tactics employed by human fighter pilots [14]. My primary contribution in Chapter 3

is showing that the two tactical behaviors are both effective in various sizes of engagements, but

are vulnerable when employed in scenarios for which they were not designed. I establish that the

pairwise-coordinated maneuvers of DA are better suited for countering isolated opponents and are

more dependent on weapon quality, while GS is most effective in dense engagement scenarios and

is less affected by low weapon quality.

As I establish in Chapter 3, GS and DA are both effective aerial combat tactical behaviors,

but are suited to different scenarios. Thus, in Chapter 4, I employ a deep-RL framework with a

novel input structure and novel output processing to equip agents to decide when in an engage-

ment to employ GS, when (and in coordination with which teammate) to leverage DA, and when

to maneuver at some specified yaw rate rather than operating under pre-scripted tactics. My pri-

mary contribution in Chapter 4 is the demonstration of these trained agents showing improvements

in own-team survival and opponent attrition over the individual tactics between which they learn

to select. I show that these agents learn through training how and when to switch tactical behav-

iors to create and exploit advantageous force concentration against their adversaries. The trained

agents effectively split duties within their team between countering the nearest, most threatening

opponents on the opposing team and spreading their fire across the opposing team’s farther-away,
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less-threatening opponents so the far-away opponents are more likely to be attrited before they can

come closer and become a greater threat.

Finally, in Chapter 5 [15], I introduce a bio-inspired close-in defense scenario between hetero-

geneous teams of multirotors. My primary contribution in Chapter 5 is demonstrating through the

experiments detailed therein that the emphasis and conclusions on force concentration and spread

across opponents detailed in the experiments of Chapter 3 [13] and Chapter 4 are also important

with respect to site-defense with a heterogeneous team of multirotors against a heterogeneous team

of attackers attempting to steal the resources the guard force need to continue operating. I show that

the maximizing guard schedules in this bio-inspired defense scheme prioritize force concentration

advantage against especially-threatening opponents, but also demonstrate that it is still prudent

to continue devoting resources to defending against lower-threat opponents. Despite their greater

cost to the resource the defending team is attempting to maximize, employing high-cost guards

that are specifically tasked with countering high-penalty attackers helps to maximize the resource

the defenders are guarding, particularly due to the high-cost guards’ ability to re-engage escaped

high-penalty attackers before these attackers reach the HVT—a Lanchester’s Square Law advan-

tage. This tactical advantage against the most threatening attackers is to the defenders’ benefit,

but in some scenarios, especially when the opposing team is large and comprised of many of both

low-threat and high-threat attackers, the less-expensive guards that defend against lower-penalty

attackers are still important to deploy and maintain in order to maximize the guarded fuel resource.

Overall, I have shown the benefits of locally-advantageous force concentration in swarm-vs.-

swarm scenarios, both for long-distance intercept and engagement of fixed-wing UAVs as well as

for close-in defense of a protected location with a heterogeneous team of multirotors. A number

of real-world practical hurdles separate these swarm-vs.-swarm defensive strategies from imme-

diate deployment in live-flight and live-fire scenarios, but my demonstration of these tactics and

strategies in action and my elucidation of the paths forward that future work could take shows the

viability and utility of such defense schemes for the swarm-vs.-swarm aerial combat scenarios of

the future.
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APPENDIX A

PSCE PERFORMANCE AGAINST OPPONENTS AGAINST WHICH PSCE AGENTS

DID NOT TRAIN

In Chapter 4, I showed the performance of untrained and trained PSCE agents against teams con-

sisting of agents operating under the hand-crafted tactical behavior against which the trained agents

trained. Here, I present those results along with results from tests in which agents that were trained

against a team employing one behavior are tested against a team employing a different behavior.

Against GS, the trained PSCE teams—even those that did not train against GS—outscore the

untrained teams across the various cases tested, as shown in Figure A.1. This is especially notice-

able in the 16-vs.-16 engagements, both for differences in own-team survival and opponent-team

attrition. The trained PSCE agents mostly outscored the untrained agents in engagements against

DA agents, as shown in Figure A.2, but, as noted in the previous section, the trained teams all find

DA more difficult to outscore, survive against, and attrit than GS. From Figures A.1 and A.2, it is

apparent that not only are the trained teams somewhat more effective than untrained teams against

teams employing the tactic against which the trained teams trained, but they are also well-trained

in good tactics, as they can counter opponents that they did not encounter during training more

effectively than untrained PSCE agents. Interestingly, in the smaller engagements shown in Fig-

ure A.2, the 2-vs.-2-trained PSCE teams—both those trained against GS and against DA—scored

more highly than the 4-vs.-4-trained teams, despite smaller engagements being where one would

expect DA teams to be more difficult to defeat. I again postulate that these 2-vs.-2-trained teams,

in training in the less-dense training engagements, learned good general tactics for such small

engagements that proved to be more effective than the tactics of DA.
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Figure A.2: These plots show the scores of PSCE agents, with the training (or lack thereof) denoted
in the legend, in engagements against DA teams.
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APPENDIX B

ASSORTED SCRIMMAGE MISSION FILES

This appendix contains example SCRIMMAGE mission files utilized in the experiments detailed

in Chapter 3 and Chapter 4.

B.1 Sample Mission Files From Baseline Tactic (DA and GS) Experiments

B.1.1 Two DA agents vs. one GS agent

Example script used to generate results shown in Section 3.4.1:

<?xml version="1.0"?>
<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

name="Fixed Wing Experiment">

<run
start="0.0"
end="7200"
motion_multiplier="12"
dt="0.1"
start_paused="false"
time_warp="1"/>

<camera
mode="free"
follow_id="4"
pos="0,1,3000"
focal_point="0,0,0"
show_fps="false"/>

<log_dir>~/.scrimmage/logs/da2vga1</log_dir>
<output_type>seed,mission,summary</output_type>

<end_condition>time, one_team</end_condition>

<network>GlobalNetwork</network>
<network>LocalNetwork</network>
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<entity_interaction
fire_rate_max="2"
fire_rounds_max="-1"
fire_range_max="100"
hit_detection="beta_weapon_model"
>FiringInteraction</entity_interaction>

<entity_interaction type="cuboid"
lengths="1000, 1000, 1010"
center="0, 0, 500"
rpy="0, 0, 0"
>Boundary</entity_interaction>

<entity_interaction
startup_collisions_only="true">SimpleCollision</

entity_interaction>
<entity_interaction>DoubleAttackPartners</entity_interaction>
<entity_interaction>SeedOutput</entity_interaction>

<metrics>SimpleCollisionMetrics</metrics>
<metrics>FiringMetrics</metrics>
<metrics>SeedInCSV</metrics>

<entity_common name="all">
<z>1000</z>
<health>1</health>
<use_variance_all_ents>true</use_variance_all_ents>
<variance_x>1000</variance_x>
<variance_y>2000000</variance_y>
<altitude>999</altitude>
<controller>SimpleAircraftControllerPID</controller>
<motion_model max_roll="45">SimpleAircraft</motion_model>
<script_name>rascal_piedmont.xml</script_name>

</entity_common>

<entity entity_common="all">
<team_id>1</team_id>
<color>0 0 255</color>
<count>2</count>
<x>-400</x>
<y>0</y>
<autonomy dummy="0"

sensing_range="1000"
fire_range_max="100"
beta="100"
enable_prop_nav="true"
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fire_FOV="3"
vel_cruise="18.5"
vel_max="18.5"
enable_boundary_control="true"
use_beta_weapon_model="true"
>DoubleAttack_SimpleAircraft_PropNavCounter</autonomy>

<heading>0</heading>
<visual_model>zephyr-blue</visual_model>

</entity>

<entity entity_common="all">
<team_id>2</team_id>
<color>238 0 0</color>
<count>1</count>
<x>400</x>
<y>0</y>
<autonomy dummy="0"

sensing_range="1000"
fire_range_max="100"
beta="750"
enable_prop_nav="true"
fire_FOV="3"
speed="18.5"
enable_boundary_control="true"
use_beta_weapon_model="true"
pct_greedy="1"
>GreedyShooter</autonomy>

<heading>180</heading>
<visual_model>zephyr-red</visual_model>

</entity>
</runscript>
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B.1.2 N DA agents vs. N GS agents

Example script used to generate results shown in Section 3.4.2:

<?xml version="1.0"?>
<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

name="Fixed Wing Experiment">

<run dt="0.1"
enable_gui="true"
end="7200"
motion_multiplier="12"
start="0.0"
start_paused="true"
time_warp="0"/>

<camera mode="free"
follow_id="4"
pos="0,1,3000"
focal_point="0,0,0"
show_fps="false"/>

<show_plugins>false</show_plugins>
<log_dir>~/.scrimmage/logs</log_dir>
<output_type>seed,mission,summary</output_type>

<end_condition>time, one_team</end_condition>

<entity_interaction
fire_rate_max="2"
fire_rounds_max="-1"
fire_range_max="100"
hit_detection="beta_weapon_model"
>RLInteraction</entity_interaction>

<entity_interaction type="cuboid"
lengths="10000, 10000, 1010"
center="0, 0, 500"
rpy="0, 0, 0"
>Boundary</entity_interaction>

<entity_interaction
startup_collisions_only="true">SimpleCollision</

entity_interaction>
<entity_interaction>DoubleAttackPartners</entity_interaction>
<entity_interaction>SeedOutput</entity_interaction>
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<metrics>SimpleCollisionMetrics</metrics>
<metrics>SimpleCollisionMetrics</metrics>
<metrics>TheRLMetrics</metrics>
<metrics>SeedInCSV</metrics>

<entity_common name="all">
<z>1000</z>
<health>1</health>
<use_variance_all_ents>true</use_variance_all_ents>
<variance_x>1000</variance_x>
<variance_y>2000000</variance_y>
<altitude>999</altitude>
<controller>SimpleAircraftControllerPID</controller>
<motion_model max_roll="45">SimpleAircraft</motion_model>
<script_name>rascal_piedmont.xml</script_name>

</entity_common>

<entity entity_common="all">
<team_id>1</team_id>
<color>0 0 255</color>
<count>10</count>
<x>-4000</x>
<y>0</y>
<autonomy dummy="0"

sensing_range="1000"
fire_range_max="100"
beta="1000"
enable_prop_nav="true"
fire_FOV="3"
vel_cruise="18.5"
vel_max="18.5"
enable_boundary_control="true"
use_beta_weapon_model="true"
>DoubleAttack_SimpleAircraft_PropNavCounter</autonomy>

<heading>0</heading>
<visual_model>zephyr-blue</visual_model>

</entity>

<entity entity_common="all">
<team_id>2</team_id>
<color>238 0 0</color>
<count>10</count>
<x>4000</x>
<y>0</y>
<autonomy dummy="0"
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sensing_range="1000"
fire_range_max="100"
beta="1000"
enable_prop_nav="true"
fire_FOV="3"
speed="18.5"
enable_boundary_control="true"
use_beta_weapon_model="true"
pct_greedy="1"
>GreedyShooter</autonomy>

<heading>180</heading>
<visual_model>zephyr-red</visual_model>

</entity>
</runscript>
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B.2 Sample Mission Files From PSCE Experiments

B.2.1 Sample Mission File From Training PSCE Agents Against DA Agents

Note that the mission file included in this section cannot be run with a basic compilation of SCRIM-

MAGE; SCRIMMAGE must be compiled with Python bindings, and each engagement must be run

from within a Python script that manually steps the SCRIMMAGE simulation.

Example script used to generate results shown in Section 4.5.1:

<?xml version="1.0"?>
<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

name="Fixed Wing Experiment">

<run
start="0.0"
end="1000"
motion_multiplier="12"
dt="0.1"
time_warp="1"
start_paused="false"/>

<camera
mode="free"
follow_id="4"
pos="0,1,3000"
focal_point="0,0,0"
show_fps="false"/>

<end_condition>time</end_condition>

<network>GlobalNetwork</network>
<network>LocalNetwork</network>

<output_type>frames,summary,git_commits</output_type>
<metrics>OpenAIRewards</metrics>
<metrics>TheRLMetrics</metrics>
<log_dir>~/.scrimmage/logs</log_dir>

<entity_interaction
fire_rate_max="2"
fire_rounds_max="-1"
fire_range_max="100"
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dead_altitude_min="9000"
max_in_range_alt="1005"
min_in_range_alt="-5"
hit_detection="beta_weapon_model"
>RLInteraction</entity_interaction>

<entity_interaction id="1"
team_id="3"
type="cuboid"
lengths="1000, 1000, 1010"
center="0, 0, 500"
rpy="0, 0, 0"
>Boundary</entity_interaction>

<entity_interaction startup_collisions_only="true"
>SimpleCollision</entity_interaction>

<entity_interaction>SeedOutput</entity_interaction>

<entity_interaction da_team="2">DARoombaPartnersRL</
entity_interaction>

<metrics>SimpleCollisionMetrics</metrics>
<metrics>SeedInCSV</metrics>

<entity_common name="all">
<z>1000</z>
<health>1</health>
<use_variance_all_ents>true</use_variance_all_ents>
<variance_x>1000</variance_x>
<variance_y>10000</variance_y>
<altitude>999</altitude>
<script_name>rascal_piedmont.xml</script_name>

</entity_common>

<entity entity_common="all">
<x>-200</x>
<y>0</y>
<team_id>1</team_id>
<count>4</count>
<color>77 77 255</color>
<heading>0</heading>
<controller

heading_pid="0.35, 0.0001, 4.5, 9"
>SimpleAircraftControllerPID</controller>

<motion_model max_roll="45">SimpleAircraft</motion_model>
<autonomy

reject_death="true"
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sensing_range="1000"
fire_range_max="100"
beta="1000"
enable_prop_nav="true"
fire_FOV="3"
vel_cruise="18.5"
enable_boundary_control="true"
use_beta_weapon_model="true"
radius="2"
prop_nav_gain="5.0"
prop_nav_dist_ahead="2.0"
hdg_perturbation_max="0.05"
da_vel_min="11"
da_vel_max="18.5"
fire_2D_mode="true"
bank_max="45"
dead_altitude_min="9000"
max_dt_out_of_bounds="30"
max_in_range_alt="1005"
min_in_range_alt="-5"
da_offense_start_dist="5.0"
da_offense_sep_dist="2.10"
da_offense_sep_time="0.1"
da_offense_sep_time2="2.5"
da_offense_engage_time="60"
da_offense_sep_ang_rad="0.20"
da_offense_bracket_max_sep_dist="2.0"
da_max_dist_from_bogey="750"
da_pack_separation="200"
da_defense_sep_dist="2"
da_defensive_engage_time="60"
da_defensive_engage_dist="100"
da_defensive_fire_rng_coe="4"
da_defense_sep_dist_err="20"
da_flee_angle="0.1"
da_vel_gain="0.9"
>PSCE</autonomy>

<sensor>RLFeaturesSensor</sensor>
<visual_model visual_scale="0.00658892">zephyr-blue</

visual_model>
</entity>

<entity entity_common="all">
<x>200</x>
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<y>0</y>
<team_id>2</team_id>
<count>4</count>
<color>255 77 77</color>
<heading>-180</heading>
<controller

heading_pid="0.35, 0.0001, 4.5, 9"
>SimpleAircraftControllerPID</controller>

<motion_model max_roll="45">SimpleAircraft</motion_model>
<autonomy

reject_death="true"
sensing_range="1000"
fire_range_max="100"
beta="1000"
enable_prop_nav="true"
fire_FOV="3"
vel_cruise="18.5"
enable_boundary_control="true"
use_beta_weapon_model="true"
radius="2"
prop_nav_gain="5.0"
prop_nav_dist_ahead="2.0"
hdg_perturbation_max="0.05"
vel_min="11"
vel_max="18.5"
fire_2D_mode="true"
bank_max="45"
dead_altitude_min="9000"
max_dt_out_of_bounds="30"
max_in_range_alt="1005"
min_in_range_alt="-5"
heading_noise_variance="0.0"
offense_start_dist="5.0"
offense_sep_dist="2.10"
offense_sep_time="0.1"
offense_sep_time2="2.5"
offense_engage_time="60"
offense_sep_dist_err="10"
offense_sep_ang_rad="0.20"
offense_bracket_max_sep_dist="2.0"
max_dist_from_bogey="750"
pack_separation="200"
defense_sep_dist="2"
defensive_engage_time="60"
defensive_engage_dist="100"
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defensive_fire_rng_coe="4"
defense_sep_dist_err="20"
flee_angle="0.1"
vel_gain="0.9"
>DoubleAttack_SimpleAircraft_PropNavCounter</autonomy>

<visual_model visual_scale="0.00658892">zephyr-red</
visual_model>

</entity>

</runscript>
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B.2.2 Sample Mission File From Experiment Between 16 PSCE (4v4 tv. DA) Trained Agents

Against 16 GS Agents

Note that the mission file included in this section cannot be run with a basic compilation of SCRIM-

MAGE; SCRIMMAGE must be compiled with Python bindings, and each engagement must be run

from within a Python script that manually steps the SCRIMMAGE simulation.

Example script used to generate results shown in Section 4.5.2:

<?xml version="1.0"?>
<runscript xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

name="Fixed Wing Experiment">

<run
start="0.0"
end="1000"
motion_multiplier="12"
dt="0.1"
time_warp="1"
start_paused="false"/>

<camera
mode="free"
follow_id="4"
pos="0,1,3000"
focal_point="0,0,0"
show_fps="false"/>

<end_condition>time</end_condition>

<network>GlobalNetwork</network>
<network>LocalNetwork</network>

<output_type>frames,summary,git_commits</output_type>
<metrics>OpenAIRewards</metrics>
<metrics>TheRLMetrics</metrics>
<log_dir>~/.scrimmage/logs</log_dir>

<entity_interaction
fire_rate_max="2"
fire_rounds_max="-1"
fire_range_max="100"
dead_altitude_min="9000"
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max_in_range_alt="1005"
min_in_range_alt="-5"
hit_detection="beta_weapon_model"
>RLInteraction</entity_interaction>

<entity_interaction id="1"
team_id="3"
type="cuboid"
lengths="1000, 1000, 1010"
center="0, 0, 500"
rpy="0, 0, 0"
>Boundary</entity_interaction>

<entity_interaction startup_collisions_only="true"
>SimpleCollision</entity_interaction>

<entity_interaction>SeedOutput</entity_interaction>

<metrics>SimpleCollisionMetrics</metrics>
<metrics>SeedInCSV</metrics>

<entity_common name="all">
<z>1000</z>
<health>1</health>
<use_variance_all_ents>true</use_variance_all_ents>
<variance_x>1000</variance_x>
<variance_y>10000</variance_y>
<altitude>999</altitude>
<script_name>rascal_piedmont.xml</script_name>

</entity_common>

<entity entity_common="all">
<x>-200</x>
<y>0</y>
<team_id>1</team_id>
<count>16</count>
<color>77 77 255</color>
<heading>0</heading>
<controller

heading_pid="0.35, 0.0001, 4.5, 9"
>SimpleAircraftControllerPID</controller>

<motion_model max_roll="45">SimpleAircraft</motion_model>
<autonomy

flip_pos_on_init="true"
reject_death="true"
sensing_range="1000"
fire_range_max="100"
beta="1000"
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enable_prop_nav="true"
fire_FOV="3"
vel_cruise="18.5"
enable_boundary_control="true"
use_beta_weapon_model="true"
radius="2"
prop_nav_gain="5.0"
prop_nav_dist_ahead="2.0"
hdg_perturbation_max="0.05"
da_vel_min="11"
da_vel_max="18.5"
fire_2D_mode="true"
bank_max="45"
dead_altitude_min="9000"
max_dt_out_of_bounds="30"
max_in_range_alt="1005"
min_in_range_alt="-5"
da_offense_start_dist="5.0"
da_offense_sep_dist="2.10"
da_offense_sep_time="0.1"
da_offense_sep_time2="2.5"
da_offense_engage_time="60"
da_offense_sep_ang_rad="0.20"
da_offense_bracket_max_sep_dist="2.0"
da_max_dist_from_bogey="750"
da_pack_separation="200"
da_defense_sep_dist="2"
da_defensive_engage_time="60"
da_defensive_engage_dist="100"
da_defensive_fire_rng_coe="4"
da_defense_sep_dist_err="20"
da_flee_angle="0.1"
da_vel_gain="0.9"
>PSCE</autonomy>

<sensor>RLFeaturesSensor</sensor>
<visual_model visual_scale="0.00658892">zephyr-blue</

visual_model>
</entity>

<entity entity_common="all">
<x>200</x>
<y>0</y>
<team_id>2</team_id>
<count>16</count>

120



<color>255 77 77</color>
<heading>-180</heading>
<controller

heading_pid="0.35, 0.0001, 4.5, 9"
>SimpleAircraftControllerPID</controller>

<motion_model max_roll="45">SimpleAircraft</motion_model>
<autonomy

flip_pos_on_init="true"
reject_death="true"
sensing_range="1000"
fire_range_max="100"
beta="1000"
enable_prop_nav="true"
fire_FOV="3"
speed="18.5"
enable_boundary_control="true"
use_beta_weapon_model="true"
pct_greedy="1"
prop_nav_gain="5.0"
prop_nav_dist_ahead="2.0"
hdg_perturbation_max="0.05"
bank_max="45"
fire_2D_mode="true"
max_dt_out_of_bounds="30"
dead_altitude_min="9000"
max_in_range_alt="1005"
min_in_range_alt="-5"
heading_noise_variance="0.0"
>GreedyShooter</autonomy>

<visual_model visual_scale="0.00658892">zephyr-red</
visual_model>

</entity>

</runscript>
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