44,092 research outputs found

    Asymptotic Optimality Theory For Decentralized Sequential Multihypothesis Testing Problems

    Full text link
    The Bayesian formulation of sequentially testing M3M \ge 3 hypotheses is studied in the context of a decentralized sensor network system. In such a system, local sensors observe raw observations and send quantized sensor messages to a fusion center which makes a final decision when stopping taking observations. Asymptotically optimal decentralized sequential tests are developed from a class of "two-stage" tests that allows the sensor network system to make a preliminary decision in the first stage and then optimize each local sensor quantizer accordingly in the second stage. It is shown that the optimal local quantizer at each local sensor in the second stage can be defined as a maximin quantizer which turns out to be a randomization of at most M1M-1 unambiguous likelihood quantizers (ULQ). We first present in detail our results for the system with a single sensor and binary sensor messages, and then extend to more general cases involving any finite alphabet sensor messages, multiple sensors, or composite hypotheses.Comment: 14 pages, 1 figure, submitted to IEEE Trans. Inf. Theor

    Decentralized sequential change detection using physical layer fusion

    Full text link
    The problem of decentralized sequential detection with conditionally independent observations is studied. The sensors form a star topology with a central node called fusion center as the hub. The sensors make noisy observations of a parameter that changes from an initial state to a final state at a random time where the random change time has a geometric distribution. The sensors amplify and forward the observations over a wireless Gaussian multiple access channel and operate under either a power constraint or an energy constraint. The optimal transmission strategy at each stage is shown to be the one that maximizes a certain Ali-Silvey distance between the distributions for the hypotheses before and after the change. Simulations demonstrate that the proposed analog technique has lower detection delays when compared with existing schemes. Simulations further demonstrate that the energy-constrained formulation enables better use of the total available energy than the power-constrained formulation in the change detection problem.Comment: 10 pages, two-column, 10 figures, revised based on feedback from reviewers, accepted for publication in IEEE Trans. on Wireless Communication

    Information bounds and quickest change detection in decentralized decision systems

    Get PDF
    The quickest change detection problem is studied in decentralized decision systems, where a set of sensors receive independent observations and send summary messages to the fusion center, which makes a final decision. In the system where the sensors do not have access to their past observations, the previously conjectured asymptotic optimality of a procedure with a monotone likelihood ratio quantizer (MLRQ) is proved. In the case of additive Gaussian sensor noise, if the signal-to-noise ratios (SNR) at some sensors are sufficiently high, this procedure can perform as well as the optimal centralized procedure that has access to all the sensor observations. Even if all SNRs are low, its detection delay will be at most pi/2-1 approximate to 57% larger than that of the optimal centralized procedure. Next, in the system where the sensors have full access to their past observations, the first asymptotically optimal procedure in the literature is developed. Surprisingly, the procedure has the same asymptotic performance as the optimal centralized procedure, although it may perform poorly in some practical situations because of slow asymptotic convergence. Finally, it is shown that neither past message information nor the feedback from the fusion center improves the asymptotic performance in the simplest model

    A New Approach to Linear/Nonlinear Distributed Fusion Estimation Problem

    Full text link
    Disturbance noises are always bounded in a practical system, while fusion estimation is to best utilize multiple sensor data containing noises for the purpose of estimating a quantity--a parameter or process. However, few results are focused on the information fusion estimation problem under bounded noises. In this paper, we study the distributed fusion estimation problem for linear time-varying systems and nonlinear systems with bounded noises, where the addressed noises do not provide any statistical information, and are unknown but bounded. When considering linear time-varying fusion systems with bounded noises, a new local Kalman-like estimator is designed such that the square error of the estimator is bounded as time goes to \infty. A novel constructive method is proposed to find an upper bound of fusion estimation error, then a convex optimization problem on the design of an optimal weighting fusion criterion is established in terms of linear matrix inequalities, which can be solved by standard software packages. Furthermore, according to the design method of linear time-varying fusion systems, each local nonlinear estimator is derived for nonlinear systems with bounded noises by using Taylor series expansion, and a corresponding distributed fusion criterion is obtained by solving a convex optimization problem. Finally, target tracking system and localization of a mobile robot are given to show the advantages and effectiveness of the proposed methods.Comment: 9 pages, 3 figure

    Cyber security situational awareness

    Get PDF
    corecore