943 research outputs found

    Shallow Circuits with High-Powered Inputs

    Get PDF
    A polynomial identity testing algorithm must determine whether an input polynomial (given for instance by an arithmetic circuit) is identically equal to 0. In this paper, we show that a deterministic black-box identity testing algorithm for (high-degree) univariate polynomials would imply a lower bound on the arithmetic complexity of the permanent. The lower bounds that are known to follow from derandomization of (low-degree) multivariate identity testing are weaker. To obtain our lower bound it would be sufficient to derandomize identity testing for polynomials of a very specific norm: sums of products of sparse polynomials with sparse coefficients. This observation leads to new versions of the Shub-Smale tau-conjecture on integer roots of univariate polynomials. In particular, we show that a lower bound for the permanent would follow if one could give a good enough bound on the number of real roots of sums of products of sparse polynomials (Descartes' rule of signs gives such a bound for sparse polynomials and products thereof). In this third version of our paper we show that the same lower bound would follow even if one could only prove a slightly superpolynomial upper bound on the number of real roots. This is a consequence of a new result on reduction to depth 4 for arithmetic circuits which we establish in a companion paper. We also show that an even weaker bound on the number of real roots would suffice to obtain a lower bound on the size of depth 4 circuits computing the permanent.Comment: A few typos correcte

    Interpolation in Valiant's theory

    Get PDF
    We investigate the following question: if a polynomial can be evaluated at rational points by a polynomial-time boolean algorithm, does it have a polynomial-size arithmetic circuit? We argue that this question is certainly difficult. Answering it negatively would indeed imply that the constant-free versions of the algebraic complexity classes VP and VNP defined by Valiant are different. Answering this question positively would imply a transfer theorem from boolean to algebraic complexity. Our proof method relies on Lagrange interpolation and on recent results connecting the (boolean) counting hierarchy to algebraic complexity classes. As a byproduct we obtain two additional results: (i) The constant-free, degree-unbounded version of Valiant's hypothesis that VP and VNP differ implies the degree-bounded version. This result was previously known to hold for fields of positive characteristic only. (ii) If exponential sums of easy to compute polynomials can be computed efficiently, then the same is true of exponential products. We point out an application of this result to the P=NP problem in the Blum-Shub-Smale model of computation over the field of complex numbers.Comment: 13 page

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure

    Generating Matrix Identities and Proof Complexity

    Get PDF
    Motivated by the fundamental lower bounds questions in proof complexity, we initiate the study of matrix identities as hard instances for strong proof systems. A matrix identity of d×dd \times d matrices over a field F\mathbb{F}, is a non-commutative polynomial f(x1,…,xn)f(x_1,\ldots,x_n) over F\mathbb{F} such that ff vanishes on every d×dd \times d matrix assignment to its variables. We focus on arithmetic proofs, which are proofs of polynomial identities operating with arithmetic circuits and whose axioms are the polynomial-ring axioms (these proofs serve as an algebraic analogue of the Extended Frege propositional proof system; and over GF(2)GF(2) they constitute formally a sub-system of Extended Frege [HT12]). We introduce a decreasing in strength hierarchy of proof systems within arithmetic proofs, in which the ddth level is a sound and complete proof system for proving d×dd \times d matrix identities (over a given field). For each level d>2d>2 in the hierarchy, we establish a proof-size lower bound in terms of the number of variables in the matrix identity proved: we show the existence of a family of matrix identities fnf_n with nn variables, such that any proof of fn=0f_n=0 requires Ω(n2d)\Omega(n^{2d}) number of lines. The lower bound argument uses fundamental results from the theory of algebras with polynomial identities together with a generalization of the arguments in [Hru11]. We then set out to study matrix identities as hard instances for (full) arithmetic proofs. We present two conjectures, one about non-commutative arithmetic circuit complexity and the other about proof complexity, under which up to exponential-size lower bounds on arithmetic proofs (in terms of the arithmetic circuit size of the identities proved) hold. Finally, we discuss the applicability of our approach to strong propositional proof systems such as Extended Frege.Comment: 46 pages, 1 figur
    • …
    corecore