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Abstract
Motivated by the fundamental lower bounds questions in proof complexity, we

initiate the study of matrix identities as hard instances for strong proof systems. A
matrix identity of d × d matrices over a field F, is a non-commutative polynomial
f(x1, . . . , xn) over F such that f vanishes on every d × d matrix assignment to its
variables.

We focus on arithmetic proofs, which are proofs of polynomial identities operating
with arithmetic circuits and whose axioms are the polynomial-ring axioms (these proofs
serve as an algebraic analogue of the Extended Frege propositional proof system; and
over GF (2) they constitute formally a sub-system of Extended Frege [9]). We introduce
a decreasing in strength hierarchy of proof systems within arithmetic proofs, in which
the dth level is a sound and complete proof system for proving d × d matrix identities
(over a given field). For each level d > 2 in the hierarchy, we establish a proof-size
lower bound in terms of the number of variables in the matrix identity proved: we
show the existence of a family of matrix identities fn with n variables, such that any
proof of fn = 0 requires Ω(n2d) number of lines.

The lower bound argument uses fundamental results from the theory of algebras
with polynomial identities together with a generalization of the arguments in [7].
Specifically, we establish an unconditional lower bound on the minimal number of
generators needed to generate a matrix identity, where the generators are substitution
instances of elements from any given finite basis of the matrix identities; a result that
might be of independent interest.

We then set out to study matrix identities as hard instances for (full) arithmetic
proofs. We present two conjectures, one about non-commutative arithmetic circuit
complexity and the other about proof complexity, under which up to exponential-
size lower bounds on arithmetic proofs (in terms of the arithmetic circuit size of the
identities proved) hold. Finally, we discuss the applicability of our approach to strong
propositional proof systems such as Extended Frege.
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1 Background

Proving super-polynomial size lower bounds on strong propositional proof systems, like the

Extended Frege system, is a major open problem in proof complexity, and in general is

among a handful of fundamental hardness questions in computational complexity theory.

An Extended Frege proof is simply a textbook logical proof system for establishing Boolean

tautologies, in which one starts from basic tautological axioms written as Boolean formulas,

and derives, step by step, new tautological formulas from previous ones by using a finite

set of logical sound derivation rules; including the so-called extension axiom enabling one to

denote a possibly big formula by a single new variable (where the variable is used neither

before in the proof nor in the last line of the proof). It is not hard to show (see [11]) that

Extended Frege can equivalently be defined as a logical proof system operating with Boolean

circuits (and without the extension axiom1).

Lower bounds on Extended Frege proofs can be viewed as lower bounds on certain non-

deterministic algorithms for establishing the unsatisfiability of Boolean formulas (and thus

as a progress towards separating NP from coNP). It is also usually considered (somewhat

informally) as related to establishing (explicit) Boolean circuit size lower bounds. In fact,

it has also another highly significant consequence, that places such a lower bound as a step

towards separating P from NP: showing any super-polynomial lower bound on the size of

Extended Frege proofs implies that, at least with respect to “polynomial-time reasoning”

(namely, reasoning in the formal theory of arithmetic denoted S1
2), it is not possible to prove

that P = NP; or in other words, it is consistent with S1
2 that P 6=NP (cf. [15]).

Accordingly, proving Extended Frege lower bounds is considered a very hard problem. In

fact, even conditional lower bounds on strong proof systems, including Extended Frege, are

not known and are considered very interesting;2 here, we mean a condition that is different

from NP 6= coNP (see [18]; the latter condition immediately implies that any propositional

proof system admits a family of tautologies with no polynomial-size proofs [4]). The only

size lower bound on Extended Frege proofs that is known to date is linear Ω(n) (where n is

the size of the tautological formula proved; see [14] for a proof). Establishing super-linear

size lower bounds on Extended Frege proofs is thus a highly interesting open problem.

That said, although proving Extended Frege lower bounds is a fundamental open problem

in complexity, it is quite unclear whether such lower bounds are indeed far from reach or be-

yond current techniques (in contrast to other fundamental hardness problems in complexity,

such as strong explicit Boolean circuit lower bounds, for which formal so-called barriers are

known).

Another feature of proof complexity is that, in contrast to circuit complexity, even the

1An additional simple technical axiom is needed to formally define this proof system ([11]).
2Informally, we call a proof system strong if there are no known (non-trivial) size lower bounds on proofs

in the system and further such lower bounds are believed to be outside the realm of current techniques.
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existence of non-explicit hard instances for strong propositional proof systems, including

Extended Frege, are unknown. For instance, simple counting arguments cannot establish

super-linear size lower bounds on Extended Frege proofs (in contrast to Shannon’s counting

argument which gives non-explicit lower bounds on circuit size, but does not in itself yield

complexity class separations). Thus, the existence of non-explicit hard instances in proof

complexity is sufficient for the purpose of lower bounding the size of strong proof systems.

Furthermore, for strong proof systems there are almost no hard candidates, namely,

tautologies that are believed to require long proofs in these systems (see Bonet, Buss and

Pitassi [2]); except, perhaps for random k-CNF formulas near the satisfiability threshold. But

for the latter instances, even lower bounds on Frege proofs of constant-depth are unknown. It

is worth noting also that Razborov [19] and especially Kraj́ıček (see e.g., [16]) had proposed

some tautologies as hard candidates for strong proof systems.

Due to the lack of progress on establishing lower bounds on strong propositional proof

systems, it is interesting, and potentially helpful, to turn our eyes to an algebraic analogue

of strong propositional proof systems, and try first to prove nontrivial size lower bounds

in such settings. Quite recently, such algebraic analogues of Extended Frege (and Frege,

which is Extended Frege without the extension axiom) were investigated by Hrubeš and the

second author [8, 9]. These proof systems denoted Pc(F), called simply arithmetic proofs,

operate with algebraic equations of the form F = G, where F and G are algebraic circuits

over a given field F. An arithmetic proof of a polynomial identity is a sequence of identities

between algebraic circuits derived by means of simple syntactic manipulation representing the

polynomial-ring axioms (e.g., associativity, distributivity, unit element, field identities, etc.;

see Definition 16). Although arithmetic proof systems are not propositional proof systems,

namely they do not prove propositional tautologies, they can be regarded nevertheless as

fragments of the propositional Extended Frege proof system when the field considered is

GF (2). That is, every arithmetic proof over GF (2) of a polynomial identity (considered as

a propositional tautology) can formally be viewed also as an Extended Frege proof. 3

Apart from the hope that arithmetic proofs would shed light on propositional proof

systems, the study of arithmetic proofs is motivated by the Polynomial Identity Testing

(PIT) problem, namely the problem of deciding if a given algebraic circuit computes the

zero polynomial. As a decision problem, polynomial identity testing can be solved by an

efficient randomized algorithm [21, 22], but no efficient deterministic algorithm is known. In

3In fact, it is probably true (but was not formally verified) that arithmetic proofs are fragments of
propositional proofs also over any other finite field, as well as over the ring of integers (when restricted
to up to exponentially big integers). That is, it is probably true that every polynomial identity proved
with an arithmetic proof over the given field or ring, can be proved with at most a polynomial increase
in size in Extended Frege when we fix a certain natural translation between polynomial identities over the
field or ring and propositional tautologies. The reason for this is that one could plausibly polynomially
simulate arithmetic proofs over such fields or rings with propositional proofs in which numbers are encoded
as bit-strings.
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fact, it is not even known whether there is a polynomial time non-deterministic algorithm or,

equivalently, whether PIT is in NP. An arithmetic proof system can thus be interpreted as

a specific non-deterministic algorithm for PIT: in order to verify that an arithmetic circuit

C computes the zero polynomial, it is sufficient to guess an arithmetic proof of C = 0.

Hence, if every true equality has a polynomial-size proof then PIT is in NP. Conversely, the

arithmetic proof system captures the common syntactic procedures used to establish equality

between algebraic expressions. Thus, showing the existence of identities that require super-

polynomial arithmetic proofs would imply that those syntactic procedures are not enough

to solve the PIT problem efficiently.4

The emphasis in [8, 9] was mainly on demonstrating non-trivial upper bounds for arith-

metic proofs (as well as lower bounds in very restricted settings). Since arithmetic proofs

(at least over GF (2)), can also be considered as propositional proofs, arithmetic proofs were

found very useful in establishing short propositional proofs for the determinant identities and

other statements from linear algebra [9]. As for lower bounds on arithmetic proofs (operating

with arithmetic circuits), the same basic linear size lower bound known for Extended Frege

[14] can be shown to hold for Pc. But any super-linear size lower bound, explicit or not, on

Pc(F) proof size (for any field F) is open. In [8] it was argued that proving lower bounds

even on very restricted fragments of arithmetic proofs is a highly nontrivial open problem.

The state of affairs we have described up to now shows how little is known about strong

propositional (and arithmetic) proof systems, and why it is highly interesting to introduce

and develop novel approaches for lower bounding proofs such as arithmetic proofs, even if

these approaches yield only conditional and possibly non-explicit lower bounds; and further,

to propose new kinds of hard candidates for strong proof systems.

2 Overview of our results

In this work we initiate the study of matrix identities as hard instances for strong proof

systems in various settings and under different assumptions. The term strong here stands

for proof systems that operate with (Boolean or arithmetic) circuits, for which we do not

know any non trivial lower bound (see Sec. A.2 for the definitions of arithmetic circuits and

non-commutative arithmetic circuits).

The ultimate goal of our suggested approach is proving Extended Frege lower bounds;

however, in this work we focus for most part on the seemingly (and relatively) easier task

of proving arithmetic proofs Pc(F) lower bounds, namely lower bounds on arithmetic proofs

establishing polynomial identities between arithmetic circuits over a field F.

4It is worth emphasizing again that arithmetic proofs are different than algebraic propositional proof
systems like the Polynomial Calculus [3] and related systems. The latter prove propositional tautologies (a
coNP language) while the former prove formal polynomial identities written as equations between algebraic
circuits (a coRP language).
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We introduce a new decreasing hierarchy of proof systems establishing matrix identities of

a given dimension, within arithmetic proofs (and whose first level coincides with arithmetic

proofs). We obtain unconditional (polynomial) lower bounds on proof systems for matrix

identities in terms of the number of variables in the identities proved. We then present two

natural conjectures from arithmetic circuit complexity and proof complexity, respectively,

based on which one can obtain up to exponential-size lower bounds on arithmetic proofs

Pc(F) in terms of the size of the identities proved.

We start by explaining what matrix identities are, as well as providing some necessary

background from algebra.

2.1 Matrix identities

For a field F let A be a non-commutative (associative) F-algebra; e.g., the algebra Matd(F)

of d× d matrices over F. (Formally, A is an F-algebra, if A is a vector space over F together

with a distributive multiplication operation; where multiplication in A is associative (but it

need not be commutative) and there exists a multiplicative unity in A.)

We shall always assume, unless explicitly stated otherwise, that the field F has charac-

teristic 0.

A non-commutative polynomial over the field F and with the variables X :=

{x1, x2, . . .} is a formal sum of monomials where the product of variables is non-commuting.

Since most polynomials in this work are non-commutative when we talk about polyno-

mials we shall mean non-commutative polynomials, unless otherwise stated. The

set of (non-commutative) polynomials with variables X and over the field F is denoted F〈X〉.
We say that f is a matrix identity of Matd(F) simply whenever f is a non-commutative

polynomial (with coefficients from F) that is equal to zero under any assignment of matrices

from Matd(F) to its variables. In other words, the polynomial f(x1, . . . , xn) over F is an

identity of the algebra A (and specifically, the matrix algebra Matd(F)), if for all c ∈ An,

f(c) = 0.

2.2 Stratification

A matrix identity is a non-commutative polynomial vanishing over all assignments of matri-

ces. If we consider the “matrix” algebra of 1×1 matrices Mat1(F), its set of identities consists

of all the non-commutative polynomials that vanish over field elements. Since, by definition,

the field is commutative, the identities of Mat1(F) are all non-commutative polynomials

such that when the product is considered as commutative we obtain the zero polynomial;

in other words, we can consider the identities of Mat1(F) as the set of (standard, i.e., com-

mutative) polynomial identities. Further, in our application we shall write all polynomials

as non-commutative arithmetic circuits, and since a non-commutative arithmetic circuit is
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equivalent to a (commutative) arithmetic circuit (except that product gates have order on

their children) we can consider the set of identities of Mat1(F) written as non-commutative

circuits, as the set of (commutative) polynomial identities written as (commutative) arith-

metic circuits.

Using matrix identities of increasing dimensions d we obtain a stratification of the lan-

guage of (commutative) polynomial identities. Namely, we obtain the following strictly

decreasing (with respect to containment) chain of identities:

(commutative) polynomial identities ) Mat2(F)-identities

) Mat3(F)-identities

) . . . (1)

) Matd(F)

) Matd+1(F) ) . . .

The fact that the identities of Matd+1(F) are also identities of Matd(F) is easy to show.

The fact that the chain above is strictly decreasing can be proved either by a elementary

methods [12] or as a corollary of [1].

2.3 Corresponding proof systems and the main lower bound

We now introduce a novel hierarchy of proof systems within arithmetic proofs Pc(F). For

this we need the concept of a basis of a set of identities of a given F-algebra A (e.g., the

matrix algebra Matd(F)) .

Basis. We say that a set of non-commutative polynomials B forms a basis for the iden-

tities of A, in the following sense: for every identity f of A there exist non-commutative

polynomials g1, ..., gk, for some k, that are substitution instances of polynomials from B,

such that f is in the two-sided ideal 〈g1, ..., gk〉 (a substitution instance of a polynomial

g(x1, . . . , xn) ∈ F〈X〉 is a polynomial g(h1, . . . , hn), for some hi ∈ F〈X〉, i ∈ [n]).

Recall that arithmetic proofs Pc(F) (see Definition 16) are proofs that start from basic

axioms like associativity, commutativity of addition and product, distributivity of product

over addition, unit element axioms, etc., in which we derive new equations between arith-

metic circuits F = G using rules for adding and multiplying two previous identities. Arith-

metic proofs are sound and complete proof systems for the set of (commutative) polynomial

identities, written as equations between arithmetic circuits.

Notice that if one takes out the Commutativity Axiom f ∙g = g ∙f from arithmetic proofs,

we get a proof system for establishing non-commutative polynomial identities written as non-

commutative arithmetic circuits (we can assume that product gates appearing in arithmetic

proofs have order on their children).
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The proof systems PMatd
(F). For any field F (of characteristic 0), any d ≥ 1, and any

basis B of the identities of Matd(F), we define the following proof system PMatd
(F), which is

sound and complete for the identities of Matd(F) (written as equations of non-commutative

circuits): consider the proof systems Pc(F) (Definition 16) and replace the commutativity

axiom h ∙ g = g ∙ h by a finite basis B of the identities of Matd(F) (namely, add a new axiom

H = 0 for each polynomial h in the basis, where H is a non-commutative algebraic circuit

computing h).5 Additionally, add the axioms of distributivity of product over addition from

both left and right (this is needed because we do not have anymore the commutativity axiom

in our system to simulate both distributivity axioms).

Note that Pc(F) can be considered as PMat1(F), since the commutator [g, h] is an axiom

of Pc(F) and the commutator is a basis of the identities of Mat1(F).

(Commutative) Polynomial Identities

Mat2(F)-identities

overF

Mat3(F)-identities

Mat4(F)-identities

Arithmetic proofsPc(F)

PMat2(F)

PMat3(F)

PMat4(F)

Figure 1: Illustration of the stratification of the language of polynomial identities and the corresponding
proof systems for each language.

Our main result is an unconditional lower bound on the size (in fact the number of lines 6)

of PMatd
(F) proofs, for any d, in terms of the number of variables n in the matrix identity

proved:

Theorem 1 (Main lower bound). Let F be any field of characteristic 0. For any natural

number d > 2 and every finite basis B of the identities of Matd(F), there exists an identity

f over Matd(F) of degree 2d + 1 with n variables, such that any PMatd
(F)-proof of f requires

Ω(n2d) lines.

The proof of the main lower bound—which is the main technical contribution of our

work—is explained in the following subsection, and is based on a complexity measure defined

on matrix identities and their generation in a (two-sided) ideal. The complexity measure is

interesting by itself, and can be applied to identities of any algebra with polynomial identities

(PI-algebras; see [20, 6] for the theory of PI-algebras), and not only matrix identities.

5Formally, we should fix a specific finite basis B for the sake of definiteness of PMatd
(F). However, different

choices of bases can only increase the number of lines in a PMatd
(F)-proof by a constant factor.

6A proof-line is any equation F = G between arithmetic circuits appearing in the proof.
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Comments. (i) When d = 2, our proof, showing the lower bound for every basis B of the

identities of Mat2(F), does not hold (see Sec. C.1.3 for an explanation).

(ii) The hard instance in the main lower bound theorem is non-explicit. Thus, we do

not know if there are small non-commutative circuits computing the hard instances. This

is the reason the lower bound holds only with respect to the number of variables n in the

hard-instances and not with respect to its circuit size—the latter is the more desired result

in proof complexity. Section 3 sets out an approach to achieve this latter result.

(iii) The proof-systems PMatd
(F) are defined using a finite basis of the identities of

Matd(F). A very interesting feature of our lower bound argument is that it is in fact an

open problem to find explicit finite bases for the identities of Matd(F) (for d > 2; see the

next sub-Section 2.3.1 on this).

(iv) We do not know if the hierarchy of proof systems PMatd
(F) for increasing d’s is a

strictly decreasing hierarchy (since we do not know if PMatd−1
(F) has any speed-up over

PMatd
(F) for identities of Matd(F)).

In the following subsection we give a detailed overview of the lower bound argument.

2.3.1 Proving the main lower bound: generative complexity lower bounds

Here we explain in details the complexity measure we define and how we obtain the lower

bound on this measure. It is simple to show that our complexity measure is a lower bound

on the minimal number of lines in a corresponding PMatd
(F)-proof (for the case d = 1 this

was observed in [7]).

The complexity measure. Given an F-algebra A (e.g., Matd(F)) and an identity f of A,

define

QB(f)

as the minimal number k such that there exist g1, . . . , gk ∈ F〈X〉 for which f ∈ 〈g1, ..., gk〉,
and every gi is a substitution instance of some polynomial from B. (Note that each substi-

tution instance, even of the same polynomial from B, adds to QB(f).) We sometimes call

QB(f) the generative complexity of f (with respect to B).

Example: Let F be an infinite field and consider the field F itself as an F-algebra, denoted

A . Then the identities of A are all the polynomials from F〈X〉 that evaluate to 0 under every

assignment from F to the variables X. Namely, these are the (non-commutative) polynomials

that are identically zero polynomials when considered as commutative polynomials. For

instance, x1x2 − x2x1 is a non-zero polynomial from F〈X〉 which is an identity over A .

It is not hard to show that the basis of the algebra A is the commutator x1x2 − x2x1,

denoted [x1, x2]. In other words, every identity of A is generated (in the two-sided ideal)

by substitution instances of the commutator. Considering Q{[x1,x2]}, we can now ask what is
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Q{[x1,x2]}(x1x3 − x3x1 + x2x3 − x3x2)? The answer is 1 since we need only one substitution

instance of the commutator: (x1 + x2)x3 − x3(x1 + x2) = x1x3 − x3x1 + x2x3 − x3x2.

Hrubeš [7] showed the following lower bound (using a slightly different terminology):

Theorem 2 (Hrubeš [7]). For any field and every n, there exists an identity f ∈ F〈X〉 of

A with n variables, such that Q{[x1,x2]}(f) = Ω(n2).

It is also not hard to show that Q{[x1,x2]}(f) = O(n2) for any identity f .

Lower bound on the complexity of generating matrix identities. An algebra with

polynomial identities, or in short a PI-algebra (PI stands for Polynomial Identities), is

simply an F-algebra that has a non-trivial identity, that is, there is a nonzero f ∈ F〈X〉 that

is an identity of the algebra.

Let us treat (the F-algebra) F as the matrix algebra Mat1(F) of 1×1 matrices with entries

from F. We shall exploit results about the structure of the identities of matrix algebras and

the general theory of PI-algebras to completely generalize Hrubeš [7] lower bound above

(excluding the case d = 2), from a lower bound of Ω(n2) for generating identities of Mat1(F)

to a lower bound of Ω(n2d) for generating identities of Matd(F), for any d > 2 and any field

F of characteristic 0:

Theorem 5 (Lower bound on generative complexity). Let F be any field of characteristic 0.

For every natural number d > 2 and every finite basis B of the identities of Matd(F), there

exists an identity f over Matd(F) of degree 2d+1 with n variables, such that QB(f) = Ω(n2d).

Notice that similar to [7], the lower bound in this theorem is non-explicit. We do not

know of an upper bound (in terms of n) that holds on QB(f), for every identity f with n

variables.

The main lower bound (Theorem 1) is a corollary of the following theorem (proved by

simple induction on the number of lines in a PMatd
(F)-proof):

Theorem. For every identity F = 0, where F is a non-commutative circuit that computes

a non-commutative polynomial f which is an identity of Matd(F), the number of lines of a

PMatd
(F)-proof of F = 0 is lower bounded up to a constant factor (depending on the choice

of finite basis B) by QB(f).

Overview of the proof of Theorem 5. The study of algebras with polynomial identities

is a fairly developed subject in algebra (see the monographs by Drensky [6] and Rowen [20]

on this topic). Within it, perhaps the most well studied topic is about the identities of

matrix algebras. In particular, the well-known theorem of Amitsur and Levitzky from 1950

[1] is the following:
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Amitsur-Levitzki Theorem ([1]). Let Sd be the permutation group on d elements and let

Sd(x1, x2, . . . , xd) denote the standard identity of degree d as follows:

Sd(x1, x2, . . . , xd) :=
∑

σ∈Sd

sgn(σ)
d∏

i=1

xσ(i).

Then, for any natural number d and any field F (in fact, any commutative ring) the standard

identity S2d(x1, x2, . . . , x2d) of degree 2d is an identity of Matd(F).

Theorem 5 is proved in several steps, but the main argument can be divided into two

main parts, described as follows:

Part 1: Here we use the Amitsur-Levitzki Theorem: we show that when E =

{S2d(x1, . . . , x2d)} there exists an f ∈ F〈X〉 with 2n variables and degree 2d + 1, such

that QE(f) = Ω(n2d). To this end, we generalize the method in [7] to “higher dimensional

commutativity axioms”: using a counting argument we show the existence of n special poly-

nomials (we call s-polynomials ; see Definition 10) P1, P2, . . . , Pn over n variables and each

of degree 2n such that QS2d
(P1, . . . , Pn) = Ω(n2d) (see Lemma 9). Then, we combine the n

s-polynomials into a single polynomial P ? with degree 2d + 1, by adding n new variables,

such that QS2d
(P ?) = Ω(QS2d

(P1, . . . , Pn)).

While [7] uses the commutator [x, y] to define the s-polynomials, we consider the higher

order commutativity axiom S2d instead. It is possible to show that S2d has sufficient prop-

erties for the lower bound as the commutator [x, y] (see Lemmas 7, 8, 12).

Part 2: Note that E = {S2d(x1, . . . , x2d)} is not a basis of Matd(F), namely there are

identities of Matd(F) that are not generated by substitution instances of S2d (also notice

that QB(f) can be defined for any B ⊆ F〈X〉). The second part in the proof of Theorem 5

is dedicated to showing that when d > 2, for all finite bases B of the identities of Matd(F)

the following holds for the hard identity f considered in the theorem: QB(f) < c ∙QE(f) for

some constant c.

For this purpose, we find a special set B′ ⊆ F〈X〉 which serves as an “intermediate”

set between B and E , such that B is generated by B′, and all the polynomials in B′ that

contribute to the generation of the hard instance f can be generated already by E . We then

show (Lemma 17) that for any basis B, there is a specific set B′ of polynomials of a special

form, namely, multi-homogenous commutator polynomials (Definition 11), that can generate

B. Based on the properties of multi-homogenous commutator polynomials, we show that,

for the hard instance f , only the generators of degree at most 2d + 1 in B′ can contribute

to the generation of f (Lemma 21). We then prove that when d > 2, all the generators of

degree at most 2d+1 in B′ can be generated by E (this is where we use the assumption that

d > 2 (see Lemma 20)). We thus get the conclusion QB′(f) < c ∙ QE(f), when d > 2.
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A very interesting feature of our proof (and theorem), is that it is in fact an open problem

to describe bases of the identities of Matd(F), for any d > 2. For the case d = 2 the basis

is known by a result of Drensky [5] (see Section E.3). However, a highly nontrivial result of

Kemer [13], shows that for any natural d there exists a finite basis for Matd(F). Our proof

shows roughly that for the hard instances f in Theorem 5 no generators different from the

S2d generators can contribute to the generation of f .

3 Towards strong lower bounds on (full) arithmetic

proofs

Here we continue the study of matrix identities as hard proof complexity instances, and set

out a program to establish lower bounds on arithmetic proofs. We present two conjectures,

interesting by themselves: one about non-commutative arithmetic circuit complexity and

the other about proof-complexity, based on which up to exponential-size lower bounds on

arithmetic proofs (in terms of the non-commutative circuit-size of the identity proved) follow.

We discuss in details these conjectures and the parameters the are needed for different kinds

of lower-bounds.

Informally, the two conjectures are as follows (recall the complexity measure QB(f) from

Sec. 2.3.1, counting the minimal number of substitution instances of generators from a basis

B needed to generate an identity f):

Conjecture I. (Informal) There exist non-commutative arithmetic circuits of small size that

compute matrix identities of high generative complexity.

Conjecture II. (Informal) Proving matrix identities by reasoning with polynomials whose

variables X1, . . . , Xn range over matrices is as efficient as proving matrix identities using

polynomials whose variables range over the entries of the matrices X1, . . . , Xn?

3.1 Towards lower bounds on PMatd
(F) in terms of arithmetic-

circuit size

Recall that a non-commutative arithmetic circuit is an arithmetic circuit that has an order

on the children of product gates and the product is performed according to this order (see

Sec. A.2). To get a size lower bound on PMatd
(F) proofs in terms of the circuit equations

proved, we need to assume the existence of non-commutative arithmetic circuits of small size

that compute matrix identities of high generative complexity:
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Conjecture I. For some fixed d ≥ 1, there exists a family of identities fn ∈ F〈X〉 of
Matd(F), with n variables, such that QB(fn) = Ω(nd), for some basis B of the identities
of Matd(F), and such that fn has a non-commutative arithmetic circuit of size O(nr), for
some constant r < d.

Assuming the veracity of the above conjecture we obtain the following lower bound:

Polynomial lower bounds on PMatd
(F)-proofs (assuming Conjecture I): There exists

a family of identities fn of Matd(F) whose non-commutative arithmetic circuit-size is sn but

every PMatd
(F)-proof of fn has size Ω(sd−r

n ).

Note that we know by Theorem 5 that the lower bound in Conjecture I is true for any

d > 2 and for some specific family fn. But we do not know whether this specific fn has small

circuits, as required in Conjecture I.

3.2 Towards polynomial-size lower bounds on full arithmetic
proofs

Here we consider the possibility that the arbitrary polynomial-size lower bounds on matrix

identities proofs PMatd
(F) transfer to arithmetic proofs Pc(F) lower bounds.

The natural way to formalize Conjecture II mentioned informally above is via the fol-

lowing translation: consider a nonzero identity f of Matd(F), for some d > 1. Then f is a

nonzero non-commutative polynomial in F〈X〉. If we substitute each (matrix) variable xi in

f by a d × d matrix of entry-variables {xijk}j,k∈[d], then f corresponds to d2 commutative

zero polynomials: f = 0 says that for every (i, j) and for every possible assignment of field

F elements to the (i, j)-entry of each of the matrix variables in f (when the product and ad-

dition of matrices are done in the standard way) the (i, j)-entry evaluates to 0. Accordingly,

let F be a non-commutative circuit computing f . Then under the above substitution of d2

entry-variables to each variable in F , we get d2 non-commutative circuits, each computing

the zero polynomial when considered as commutative polynomials (see Definition 15). We

denote the set of d2 circuits corresponding to the identity F by JF Kd (and we extend it

naturally to equations between circuits: JF = GKd).

Example: Let d = 2 and let f = xy − yx (it is obviously not an identity of Mat2(F), but

we use it only for the sake of example). And let F = xy − yx be the corresponding circuit

(in fact, formula) computing f . Then we substitute matrices for x, y to get:

(
x11 x12

x21 x22

)

∙

(
y11 y12

y21 y22

)

−

(
y11 y12

y21 y22

)

∙

(
x11 x12

x21 x22

)

.

11



And the (1, 1)-entry non-commutative circuit (in fact formula) in JF Kd, is:

(x11y11 + x12y21) − (y11x11 + y12x21).

It is not hard to show that
∣
∣JF Kd

∣
∣ = O (d3|F |), for every non-commutative circuit F

(where
∣
∣JF Kd

∣
∣ is the total sizes of all circuits in JF Kd and |F | is the size of F ). We denote by

∣
∣ `Pc(F) JF = 0Kd

∣
∣

the minimal size of a Pc(F) proof that contains (as proof-lines) all the circuit-equations in

JF = 0Kd.

Conjecture II. Let d be a positive natural number and let B be a (finite) basis of the
identities of Matd(F). Assume that f ∈ F〈X〉 is an identity of Matd(F), and let F be a
non-commutative arithmetic circuit computing f . Then, the minimal number of lines in a
Pc(F) proof of the collection of d2 (entry-wise) equations JF = 0Kd corresponding to F , is
lower bounded (up to a constant factor) by QB(f). And in symbols:

∣
∣ `Pc(F) JF = 0Kd

∣
∣ = Ω(QB(f)). (2)

The conditional lower bound we get is now similar to that in Section 3.1, except that it

holds for Pc(F) and not only for fragments of Pc(F):

Polynomial lower bounds on arithmetic proofs Pc(F) (assuming Conjectures I

and II): There exists a family of identities fn of Matd(F) whose non-commutative arithmetic

circuit-size is sn but every Pc(F)-proof of fn has size Ω(sd−r
n ).

We also present a propositional version of Conjecture II, by considering F to be GF (2),

adding to Pc(F) the Boolean axioms x2
i +xi = 0 and considering matrix identities for Matd(F)

(see Section E.2).

3.3 Towards exponential-size lower bounds on arithmetic proofs

Assuming Conjecture II above holds (i.e., Equation 2), we show under which further condi-

tions one gets exponential-size lower bounds on arithmetic proofs Pc(F). The idea is to take

the dimension d of the matrix algebras as a parameter by itself. For this we need to set up

the assumptions more carefully:

Assumptions:

1. Refinement of Conjecture II: Assume that for any d and any basis Bd of the

identities of Matd(F) the number of lines in any Pc(F) proof of JF = 0Kd is at least
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CBd
∙ QBd

(f), where CBd
is a number depending on Bd and F is a non-commutative

arithmetic circuit computing f (this is the same as Conjecture II except that now CBd

is not a constant).

2. Assume that for any sufficiently large d and any basis Bd of the identities of Matd(F),

there exists a number cBd
such that for all sufficiently large n there exists an identity

fn,d with QBd
(fn,d) ≥ cBd

∙ n2d. (The existence of such identities are known from our

unconditional lower bound.)

3. Assume that for the cBd
in item 2 above: cBd

∙ CBd
= Ω

(
1

poly(d)

)
.

4. (Variant of) Conjecture I: Assume that the non-commutative arithmetic circuit

size of fn,d is at most poly(n, d).

Corollary (assuming Assumptions 1-4 above): There exists a polynomial size (in n)

family of identities between non-commutative arithmetic circuits, for which any Pc(F) proof

requires exponential 2Ω(n) number of proof-lines.

Proof. By the assumptions, every Pc(F)-proof of Jfn,d = 0Kd has size at least cBd
∙ CBd

∙ n2d.

Consider the family {fn,d}∞n=1, where d is a function of n, and we take d = n/4. Then, we get

the following lower bound on the number of lines in any Pc(F)-proof of the family {fn,d}∞n=1:

cBd
∙ CBd

∙ n2d =
1

poly(n/4)
nn/2 = 2Ω(n),

which (by Assumption 4) is exponential in the arithmetic circuit-size of the identities fn,d

proved. QED

Justification of assumptions. We wish to justify to a certain extent the new Assump-

tions 3 above (which lets us obtain the exponential lower bound). We shall use the special

hard polynomials f that we proved exist in Theorem 5 for this purpose.

First, note that Assumption 2 holds for these f ’s, by Theorem 5. In Section E.1 we show

that the function cBd
for these f ’s does not decrease too fast. And we use this fact to get

the following (conditional exponential lower bound):

Proposition. Suppose Assumption 1 above holds (refinement of Conjecture II) and assume

that CBn/4
= Ω(1/poly(n)). Then, there exists a family of non-commutative circuits {Fn}∞n=1

(computing the family of polynomials {fn, n
4
}∞n=1) such that the number of lines in any Pc(F)-

proof of JFn = 0Kn/4 is at least 2Ω(n).

Note that this will give us an exponential-size lower bound on Pc(F) proofs only if more-

over the arithmetic circuit size of {Fn}∞n=1 is small enough (e.g., if Assumption 4 above

holds).
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4 Concluding remarks

This work originates from the fundamental goal of establishing lower bounds on strong proof

systems. Our focus was on arithmetic proofs which serve as a useful [9] analogue of propo-

sitional Extended Frege proofs. Along the way, we have discovered an interesting hierarchy

within arithmetic proofs: a hierarchy of sound and complete proof systems for matrix identi-

ties of increasing dimensions. In this hierarchy we have been able to establish unconditional

nontrivial size-lower bounds (in terms of the number of variables in the identities proved).

We then used these results, together with two seemingly natural conjectures about non-

commutative arithmetic circuits and proof complexity, to propose matrix identities as hard

candidates for strong proof systems. We showed that using these two conjectures, one can

obtain up to exponential-size lower bounds (in terms of the circuit-size of the identities

proved).

Proving lower bounds on strong (propositional) proof systems is a fundamental open

problem in the theory of computing; nevertheless, it is in fact not clear whether such lower

bounds are beyond current techniques (in contrast to other fundamental hardness problems

in complexity, such as explicit Boolean circuits lower bounds). In light of this, and the

fact that almost no hard candidates for strong proof systems are currently known (see [2,

16]), it seems that an important conceptual, so to speak, contribution of this paper, is to

supply such new hard candidates in the form of matrix identities. Moreover, as our work

partially demonstrates, such matrix identities have structure that is helpful in proving proof

complexity lower bounds.

5 Relation to previous work

Relation to previous work by Hrubeš [7]. The problem of proving quadratic size

lower bounds on arithmetic proofs Pc was considered by Hrubeš in [7]. The work in [7]

gave several conditions and open problems, under which, quadratic size lower bounds on

arithmetic proofs would follow (and further, showed that the general framework suggested

may have potential, at least in theory, to yield Extended Frege quadratic-size lower bounds).

The current work can be viewed as an attempt to extend the approach suggested in Hrubeš

[7], from an approach suitable for proving up to Ω(n2) size lower bounds on Pc proofs, (and

potentially Extended Frege proofs) to an approach for proving much stronger lower bounds,

namely an Ω(nd) lower bound on Pc(F) proofs, for every positive d > 2 and for every zero

characteristic field F; and under stronger assumptions, exponential 2Ω(n) lower bounds on

Pc(F) proofs (and similarly, potentially on Extended Frege proofs).

Relation to other previous works. Apart from the connection to [7], we may consider

the relation of the current work to the work of Hrubeš and Tzameret [9] that obtained
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polynomial-size (arithmetic and propositional) proofs for certain identities concerning ma-

trices. As far as we see, there are no direct relations between these two works: in the current

work we are studying matrix identities whose number of matrices (i.e., variables) grows with

the number of variables n (if the number of matrices in the matrix identities over Matd(F)

is m then the number of variables in the translation of the identities to a set of d2 identities

is d2 ∙ n). Whereas in [9] the number of matrices was fixed and only the dimension of the

matrices grows.

Note also that the matrix identities studied in [9] are not even translations (via J∙K) of

matrix identities over Matd(F). For instance consider the identity det(A) ∙det(B) = det(AB)

from [9], where A and B are 2 × 2 matrices. Then we get that:

det

(
a b
c d

)

∙ det

(
e f
g h

)

= det

(
ae + bg af + bh
ce + dg cf + dh

)

is equal to (ad − bc) ∙ (eh − fg) = (ae + bg)(cf + dh) − (af + bh)(ce + dg). But notice that,

e.g., in our translation of a matrix identity over Matd(F), two variables that correspond to

the same matrix cannot multiply each other, while in the example above, a multiplies c and

b multiplies d, though they are entries of the same matrix.
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Technical appendix

A Formal preliminaries

A.1 Algebras with polynomial identities

For a natural number n, put [n] := {1, 2, ..., n}. We use lower case letters a, b, c for constants

from the underlying field, x, y, z for variables and x, y, z for vectors of variables, f, g, h, ` or

upper case letters such as A,B, P,Q for polynomials and f, g, h, `, A,B, P ,Q, for vectors of

polynomials (when the arity of the vector is clear from the context).

A polynomial is a formal sum of monomials, where a monomial is a product of (possibly

non-commuting) variables and a constant from the underlying field. For two polynomials

f(x1, . . . , xn) and g we say that g is a substitution instance of f if g = f(h1, . . . , hn) for some

polynomials h1, . . . , hn; and we sometimes denote f(h1, . . . , hn) by f(h). For a polynomial

f(x1, . . . , xn) ∈ F〈X〉, f
∣
∣
xi1
←gi1

,...,xik
←gik

denotes the polynomial that replaces xi1 , . . . , xik by

gi1 , . . . , gik in f, respectively, where gi1 , . . . , gik ∈ F〈X〉, i1, . . . , ik are distinct numbers from

[n] and k ∈ [n].

For a vector H of polynomials H1, . . . , Hk ∈ F〈X〉 where k is positive integer, we also use

the notation H|Hj←f , to denote the vector of polynomials that replace the jth coordinate Hj

in H by a polynomial f ∈ F〈X〉, where j ∈ [k].

Definition 1. Let A be a vector space over a field F and ∙ : A × A → A be a distributive

multiplication operation. If ∙ is associative, that is, a1 ∙ (a2 ∙a3) = (a1 ∙a2) ∙a3 for all a1, a2, a3

in A, then the pair (A, ∙) is called an associative algebra over F, or an F-algebra, for

short.7

Perhaps the most prominent example of an F-algebra is the algebra of d × d matrices,

for some positive natural number d, with entries from F (with the usual addition and mul-

tiplication of matrices). We denote this algebra by Matd(F). Note indeed that Matd(F)

is an associative algebra but not a commutative one (i.e., the multiplication of matrices is

non-commutative because AB does not necessarily equal BA, for two d × d matrices A,B).

Definition 2. Let F〈X〉 denote the associative algebra of all polynomials such that the vari-

ables X := {x1, x2, . . .} are non-commutative with respect to multiplication. We call F〈X〉
the free algebra (over X).

For example, x1x2−x2x1+x3x2x
2
3−x2x

3
3, x1x2−x2x1 and 0 are three distinct polynomials

in F〈X〉.

7In general an F-algebra can be non-associative, but since we only talk about associative algebras in this
paper we use the notion of F-algebra to imply that the algebra is associative.
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Note that the set F〈X〉 forms a non-commutative ring. We sometimes call F〈X〉 the

ring of non-commutative polynomials and call the polynomials from F〈X〉 non-commutative

polynomials. Throughout this paper, unless otherwise stated, a polynomial is meant to be a

non-commutative polynomial, namely a polynomial from the free algebra F〈X〉.
We now introduce the concept of a polynomial identity algebra, PI-algebra for short:

Definition 3. Let A be an F-algebra. An identity of A is a polynomial f(x1, ..., xn) ∈ F〈X〉
such that:

f(a1, ..., an) = 0, for all a1, ..., an ∈ A.

A PI-algebra is simply an algebra that has a non-trivial identity, that is, there is a nonzero

f ∈ F〈X〉 that is an identity of the algebra.

For example, every commutative F-algebra A is also a PI-algebra: for any a, b ∈ A, it

holds that ab − ba = 0, and so xixj − xjxi is a nonzero polynomial identity of A, for any

positive i 6= j ∈ N. A concrete example of a commutative algebra is the usual ring of

(commutative) polynomials with coefficients from a field F and variables X = {x1, x2, . . .},
denoted usually F[X].

An example of an algebra that is not a PI-algebra is the free algebra F〈X〉 itself. This is

because a nonzero polynomial f ∈ F〈X〉 cannot be an identity of F〈X〉 (since the assignment

that maps each variable to itself does not nullify f).

A two-sided ideal I of an F-algebra A is a subset of A such that for any (not necessarily

distinct) elements f1, ..., fn from I we have
∑n

i=1 gi ∙fi ∙hi ∈ I, for all g1, ..., gn, h1, ..., hn ∈ A.

Definition 4. A T-ideal T is a two-sided ideal of F〈X〉 that is closed under all endomor-

phisms8, namely, is closed under all substitutions of variables by polynomials.

In other words, a T-ideal is a two-sided ideal T , such that if f(x1, ..., xn) ∈ T then

f(g1, ..., gn) ∈ T , for any g1, ..., gn ∈ F〈X〉.
It is easy to see the following:

Fact 3. The set of identities of an (associative) algebra is a T-ideal.

A basis of a T-ideal T is a set of polynomials whose substitution instances generate T
as an ideal :

Definition 5. Let B ⊆ F〈X〉 be a set of polynomials and let T be a T-ideal in F〈X〉. We

say that B is a basis for T or that T is generated as a T-ideal by B, if every f ∈ T
can be written as:

f =
∑

i∈I

hi ∙ Bi(gi1, ..., gini
) ∙ `i ,

for hi, `i, gi1, ..., gini
∈ F〈X〉 and Bi ∈ B (for all i ∈ I).

8An algebra endomorphism of A is an (algebra) homomorphism A → A.
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Given B ⊆ F〈X〉, we write T (B) to denote the T-ideal generated by B. Thus, a T-ideal

T is generated by B ⊆ F〈X〉 if T = T (B).

Examples: T (x1) is simply the set of all polynomials from F〈X〉. T (x1x2 − x2x1) is the set

of all non-commutative polynomials that are zero if considered as commutative polynomials.

Note that the concept of a T-ideal is already somewhat reminiscent of logical proof

systems, where generators of the T-ideal T are like axioms schemes and generators of a

two-sided ideal containing f are like substitution instances of the axioms.

A polynomial is homogenous if all its monomials have the same total degree. Given a

polynomial f , the homogenous part of degree j of f , denoted f (j) is the sum of all monomials

with total degree j. We write (C)(j) to denote the jth-homogeneous part of the circuit C and

the vector
(
C
)(j)

denotes the vector consisting of the jth-homogeneous parts of the circuits

C1, C2, . . . , C2d.

Definition 6. Sd(x1, x2, . . . , xd) denotes the standard identity of degree d as follows:

Sd(x1, x2, . . . , xd) :=
∑

σ∈Sd

sgn(σ)
d∏

i=1

xσ(i) ,

where Sd denotes the symmetric group on d elements and sgn(σ) is the sign of the permuta-

tion σ.

For n polynomials f1, . . . , fn where n ≥ 2, n ∈ Z, we define the generalized-

commutator [f1, . . . , fn] as follows:

[f1, f2] := f1f2 − f2f1, (in case n = 2)

and [f1, . . . , fn−1, fn] := [[f1, . . . , fn−1], fn], for n > 2.

A polynomial f ∈ F〈X〉 with n variables is homogenous with degrees (1, . . . , 1) (n times)

if in every monomial the power of every variable x1, . . . , xn is precisely 1. In other words,

every monomial is of the form α ∙
∏n

i=1 xσ(i), for some permutation σ of order n and some

scalar α. For the sake of simplicity, we shall talk in the sequel about polynomial of degree

n, when referring to polynomial with degrees (1, . . . , 1) (n times). Thus, any polynomial with

n variables is homogenous of total-degree n.

A.2 Arithmetic circuits

Definition 7. Let F be a field, and let X = {x1, . . . , xn} be a set of input variables. An

arithmetic (or algebraic) circuit is a directed acyclic graph, where the in-degree of nodes

is at most 2. Every leaf of the graph (namely, a node of in-degree 0) is labelled with either
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an input variable or a field element. Every other node of the graph is labelled with either +

or ×(in the first case the node is a sum-gate and in the second case a product-gate). Every

edge in the graph is labelled with an arbitrary field element. A node of out-degree 0 is called

an output-gate of the circuit.

Every node and every edge in an arithmetic circuit computes a polynomial in the com-

mutative polynomial-ring F[X] in the following way. A leaf just computes the input variable

or field element that labels it. the sum of the polynomials computed by the two edges that

reach it. A product-gate computes the product of the polynomials computed by the two

edges that reach it. We say that a polynomial g ∈ F[X] is computed by the circuit if it is

computed by one of the circuit’s output-gates.

The size of a circuit Φ is defined to be the number of edges in Φ, and is denoted by |Φ|.

Definition 8. Let F be a field, and let X = {x1, . . . , xn} be a set of input variables. A non-

commutative arithmetic circuits is similarly to the arithmetic circuits defined above,

with the following additional feature: given any ×-gate of fanin 2, its children are labeled by

a fixed order.

Every node and every edge in a non-commutative arithmetic circuit computes a noncom-

mutative polynomial in the free algebra F〈X〉 in exactly the same way as the arithmetic

circuit does, except that at each × − gate, the ordering among the children is taken into

account in defining the polynomial computed at the gate.

The size of a noncommutative circuit Φ is also defined to be the number of vertices in Φ,

and is denoted by |Φ|.

B The complexity measure

Let A be a PI-algebra (Definition 3) and let T be the T-ideal (Definition 4) consisting of all

identities of A (see Fact 3). Assume that B is a basis for the T-ideal T , that is, T (B) = T .

Then every f ∈ T is a consequence of B, namely, can be written as a linear combination of

substitution instance of polynomials from B as follows:

f =
∑

i∈I

hi ∙ Bi(gi1, ..., gini
) ∙ `i , (3)

for hi, `i, gi1, ..., gini
∈ F〈X〉 and Bi ∈ B (for all i ∈ I).

A very natural question, from the complexity point of view, is the following: What is the

minimal number of distinct substitution instances Bi(gi1, . . . , gini
) of generators from B that

must occur in (3)? Or in other words, how many distinct substitution instances of generators

are needed to generate f above?

Formally, we have the following:
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Definition 9 (QB(f)). For a set of polynomials B ⊆ F〈X〉, define QB(f) as the smallest

(finite) k such that there exist substitution instances g1, g2, . . . , gk of polynomials from B with

f ∈ 〈g1, g2, . . . , gk〉,

where 〈g1, g2, . . . , gk〉 is the two-sided ideal generated by g1, g2, . . . , gk.

If the set B is a singleton B = {h}, we shall sometimes write Qh(∙) instead of Q{h}(∙).
Accordingly, we extend Definition 9 to a sequence of polynomials and let QB(f1, . . . , fn)

be the smallest k such that there exist some substitution instances g1, g2, . . . , gk of polyno-

mials from B with

fi ∈ 〈g1, g2, . . . , gk〉, for all i ∈ [k].

Note that QB(f) is interesting only if f is not already in the generating set. Hence, we

need to make sure that the generating set does not contain f and the easiest way to do this

(when considering asymptotic growth of measure) is by stipulating the the generating set

is finite. Given an algebra, the question whether there exists a finite generating set of the

T-ideal of the identities of the algebra is a highly non-trivial problem, that goes by the name

The Specht Problem. Fortunately, for matrix algebras we can use the solution of the Specht

problem given by Kemer [13]. Kemer showed that for every matrix algebra A there exists a

finite basis of the T-ideal of the identities of A. The problem to actually find such a finite

basis for most matrix algebras (namely for all values of d, for Matd(F)) is open.

We have the following simple proposition (which is analogous to a certain extent to the

fact that every two Frege proof systems polynomially simulate each other; see e.g. [14]):

Proposition 4. Let A be some F-algebra and let B0 and B1 be two finite bases for the

identities of A. Then, there exists a constant c (that depends only on B0, B1) such that for

any identity f of A:

QB0(f) ≤ c ∙ QB1(f).

Proof. Assume that B0 = {A1, A2, . . . , Ak} and B1 = {B1, B2, . . . , B`}. And suppose that

QB1(f) = q and f ∈
〈
Bi1(g1), . . . , Biq(gq)

〉
, for ij ∈ [`] and where gj ∈ F〈X〉 are the

substitutions of polynomials for the variables of Bij . By assumption that both B0 and B1

are bases for A, there exists a constant r such that Bij ∈
〈
Aj1(hj1), ..., Ajr(hjr)

〉
, for all

j ∈ [q], and where hjl
∈ F〈X〉 are the substitutions of polynomials for the variables of Ajl

,

for any l ∈ [r] (formally, r = max{QB0(Bi) : i ∈ [`]}).
Note that if Bij ∈

〈
Aj1(hj1), . . . , Ajr(hjr)

〉
, then for any substitution gj (of polynomials to

the variables X) we have Bij(gj) ∈
〈(

Aj1(hj1)
)
(gj), . . . ,

(
Ajr(hjr)

)
(gj)

〉
. Thus, every Bij (gj)

is generated by r substitution instances of polynomials from B0, for any j ∈ [q]. Therefore,

f can be generated with at most r ∙ q substitution instances of generators from B0, that is,

QB0(f) ≤ r ∙ QB1(f) where r = max{QB0(Bi) : i ∈ [`]}. (4)

QED
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C Matrix algebras

Hrubeš’ work. For an identity f in a commutative algebra, we define the notation

Q{[x,y]}(f) as the minimal number of substitution instances of the commutativity axioms

[x, y] = 0 we need to generate f in the two-sided ideal.

For example, Q[x,y](x1x2−x2x1) is 1. And Q[x,y](x1x2−x2x1 +x1x3−x3x1) is also 1 since

the formula x1x2 −x2x1 + x1x3 −x3x1 equals [x2 + x3, x1]. In [7] it was concluded that there

is an identity f with n variables, such that:

Q[x,y](f) = Ω(n2).

We wish to extend this result to matrix algebras. Let Matd(F) denote the d × d matrix

algebra over F, that is, the set of all n × n matrices with entries from F, with the usual

operations of matrices. First of all, we extend the notation Q[x,y](f), which only count the

instances of one axiom, to the notation QA1,A2,...,An which count the instances of n axioms

A1 = 0, A2 = 0, . . . , An = 0.

Concerning matrix algebras, the following is the famous Amitsur-Levitzky Theorem:

Amitsur-Levitzki Theorem ([1]). For any natural number d and any field F (in fact, any

commutative ring) the standard identity S2d(x1, x2, . . . , x2d) of degree 2d is an identity of

Matd(F).

Further, it can be shown that Matd(F) does not have identities of degree smaller than

2d. And that the identities of Matd(F) can be finitely generated [13]. That is, there must

be a finite generating set for Matd(F). By Proposition 4 no matter which finite generating

set {A1, A2, ..., Ak} for Matd(F) we choose, the value QA1,A2,...Ak
is the same up to a constant

factor.

Our main theorem is the following:

Theorem 5. Let F be any field of characteristic 0. For every natural number d > 2 and for

every finite basis B of the T-ideal of identities of Matd(F), there exists an identity P over

Matd(F) of degree 2d + 1 with n variables, such that QB(P ) = Ω(
(

n
2d

)
) = Ω(n2d).

It is interesting to point out that although we do not necessarily know what is the

(finite) generating set of Matd(F) we still can lower bound the number of generators needed

to generate certain identities.

C.1 The lower bound

We start by proving a lower bound on QS2d
, that is, we prove a lower bound on the number

of substitution instances of S2d identities needed to generate a certain identity (though S2d

is not known to be the basis of the T-ideal of the identities over Matd(F)) .
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Lemma 6. For any natural d ≥ 1 and any field F of characteristic 0 there exists a polynomial

P ∈ Matd(F) of degree 2d + 1 with n variables such that QS2d
(P ) = Ω(n2d).

Comment: It can be shown that the lemma also holds for any finite field F. Since in Section

C.1.3 we need to assume that the field is of characteristic 0, we prove the lemma only for

fields of characteristic 0 .

For proving the lemma, we introduce the following definition:

Definition 10. A polynomial P ∈ F〈X〉 with n variables x1, . . . , xn is called an s-

polynomial if:

P =
∑

j1<j2<...<j2d∈[n]

cj1j2...j2d
∙ S2d (xj1 , xj2 . . . xj2d

) ,

for some natural d and constants cj1j2....j2d
∈ {0, 1}, for j1 < j2 < . . . < j2d ∈ [n].

Lemma 7. For any P1, P2, . . . , P2d ∈ F〈X〉 where d is a positive integer, S2d(P1, P2, . . . , P2d)

is the zero polynomial if there exists i ∈ [2d] such that Pi is a constant.

Proof. For a fixed I ∈ [2d], we have PI = c ∈ F.

For convenience, write the set {x ∈ [2d]|x 6= I} as [2d]/I, the permutation(
1 2 . . . m − 1 m m + 1 . . . 2d
i1 i2 . . . im−1 I im . . . i2d−1

)

as σm where {i1, . . . , i2d−1} = [2d]/I.

Then

S2d(P1, P2, . . . , P2d) =
∑

σ∈S2d

sgn(σ)
2d∏

i=1

Pσ(i)

=
∏

{i1,i2,...,i2d−1}=[2d]/I

2d∑

m=1

sgn(σm)
m−1∏

j=1

PijPI

2d−1∏

j=m

Pij

=
∏

{i1,i2,...,i2d−1}=[2d]/I

2d∑

m=1

sgn(σm)c
2d−1∏

j=1

Pij

=c
∏

{i1,i2,...,i2d−1}=[2d]/I

(
2d∑

m=1

sgn(σm)

)
2d−1∏

j=1

Pij

=c
∏

{i1,i2,...,i2d−1}=[2d]/I

(
d∑

m=1

(sgn(σ2m−1) + sgn(σ2m))

)
2d−1∏

j=1

Pij

=c
∏

{i1,i2,...,i2d−1}=[2d]/I

(
d∑

m=1

0

)
2d−1∏

j=1

Pij

=0.

QED
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Any s-polynomial has the following property:

Lemma 8. Let f be an s-polynomial. If there exist vectors of polynomials P1, . . . , Pr with

f ∈
〈
S2d(P1), . . . , S2d(Pr)

〉
,

then

f =
r∑

i=1

ciS2d

((
Pi

)(1)
)

.

Proof. Notice that the s-formula f is 2d−homogenous. Thus,

f = (f)(2d) ∈
{

(h)(2d)
∣
∣ h ∈

〈
S2d(P1), . . . , S2d(Pr)

〉}
.

That is

f ∈
〈
S2d(P1)

(2d), . . . , S2d(Pr)
(2d)
〉
.

By Lemma 7, for some j ∈ [r], i ∈ [2d], the polynomial S2d(P j) equals to the zero

polynomial if some P ji
is a constant. Namely S2d(Pj)

(2d) = S2d

((
Pj

)(1)
)

, for all j ∈ [r].

Then,

f ∈
〈
S2d

((
P1

)(1)
)

, . . . , S2d

((
Pr

)(1)
)〉

.

That is,

f =
r∑

j=1

tj∑

i=1

AjiS2d

((
Pj

)(1)
)

Bji, for some Aji, Bji ∈ F〈X〉.

Moreover, (
AjiS2d

((
Pj

)(1)
)

Bji

)(2d)

= (AjiBji)
(0) S2d

((
Pj

)(1)
)

.

Thus

f =
r∑

j=1

cjS2d

((
Pj

)(1)
)

,

where cj is the constant
∑tj

i=1 (AjiBji)
(0), for any j ∈ [r]. QED

C.1.1 The counting argument

Notation. If B ⊆ F〈X〉 contains only one polynomial g, then we write Qg(∙) instead of

QB(∙), to simplify the writing. Note that B may not be a basis for the algebra considered

(e.g., we may consider identities of the Matd(F) generated by some B, where B is not a basis

for (all) the identities of Matd(F)).
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Lemma 9. For any field F of characteristic 0, there exist s-polynomials P1, . . . , Pn which

are identities of Matd(F) in n variables, such that QS2d
(P1, . . . , Pn) = Ω(n2d) (and

QS2d
(P1, . . . , Pn) is finite).

In Section C.1.3 we show that, if F is of characteristic 0 then this lower bound holds for

any finite basis of Matd(F), namely for QB, where B is any finite basis of Matd(F).

Proof. We prove by a generalization of the counting argument from [7] that there exists

a sequence of polynomials P1, P2, . . . , Pn that require Ω
(
n2d
)

substitution instances of the

S2d(x1, . . . , x2d) identities to generate (all of the polynomials in the sequence) in a two-sided

ideal.

Recall that an s-polynomial (Definition 10) is of the following form:

∑

j1<j2<...<j2d∈[n]

cij1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

), where cij1j2∙∙∙j2d
∈ {0, 1} . (5)

Assume that

` = max {QS2d
(P1, . . . , Pn) : Pi is an s-polynomial, for all i ∈ [n]} .

Then for any choice of n s-polynomials P1, . . . , Pn there are ` vectors of polynomials

Q1, . . . , Q` from F〈X〉, such that

P1, . . . , Pn ∈
〈
S2d(Q1), . . . , S2d(Q`)

〉
.

By Lemma 8, for any choice of P1, . . . , Pn and Q1, . . . , Q`, for every i ∈ [n]:

Pi =
∑̀

j=1

cijS2d

(
Qj

(1)
)

=
∑̀

j=1

cijS2d

(
n∑

m=1

amj1xm,
n∑

m=1

amj2xm, . . . ,
n∑

m=1

amj2d
xm

)

(for some cij , amjk
∈ F).

Consider a vector (c1j
, . . . , cnj

, ak1m, . . . , ak(2d)m) (m ∈ [n], k ∈ [`]). By linearity of S2d:

∑̀

k=1

cikS2d

(
n∑

m=1

ak1mxm,
n∑

m=1

ak2mxm, . . . ,
n∑

m=1

ak(2d)mxm

)

= (6)

∑

j1<j2<...<j2d∈[n]

cij1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

) (where cij1j2∙∙∙j2d
∈ F). (7)

A polynomial map μ : Fn → Fm of degree d > 0, is a map μ = (μ1, . . . , μm), where each μi

is a (commutative) polynomial of degree d with n variables.
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Claim. Consider the coefficients c1j
, . . . , cnj

, ak1m, . . . , ak(2d)m and the coefficients cij1j2∙∙∙j2d

in Equation 6 as variables. Then, Equation 6 defines a degree-(2d + 1) polynomial map

φ : F(2d+1)nl → Fn( n
2d) that maps each vector

(c1j
, . . . , cnj

, ak1m, . . . , ak(2d)m), for m ∈ [n], k ∈ [`],

to

(c1j1j2∙∙∙j2d
, . . . , cnj1j2∙∙∙j2d

), for j1 < j2 < . . . < j2d ∈ [n].

We omit the details of the proof of this claim. We have the following lemma:

Lemma 10 ([10], Lemma 5). For any field F, if μ : Fn → Fm is a polynomial map of degree

d > 0, then |μ(Fn)
⋂
{0, 1}m| ≤ (2d)n.

Thus, for the degree-(2d + 1) polynomial map φ : F(2d+1)nl → Fn( n
2d), we have

|φ(F(2d+1)nl)
⋂

{0, 1}n( n
2d) | ≤ (2(2d + 1))(2d+1)nl.

Recall that for any choice of n s-polynomials P1, . . . , Pn there are ` vectors of polynomials

Q1, . . . , Q` from F〈X〉, such that

P1, . . . , Pn ∈
〈
S2d(Q1), . . . , S2d(Q`)

〉
.

For convenience, we use C for the 0− 1 vector (c1j1j2∙∙∙j2d
, . . . , cnj1j2∙∙∙j2d

), where cij1j2∙∙∙j2d
∈

{0, 1} , i ∈ [n], j1 < j2 < . . . < j2d ∈ [n]. Since for every possible C, the following polynomials

are s-polynomials:

∑

j1<j2<...<j2d∈[n]

C1j1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

), . . . ,
∑

j1<j2<...<j2d∈[n]

Cnj1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

),

there exist ` vectors of polynomials Q1, . . . , Q` in F〈X〉, such that

∑

j1<j2<...<j2d∈[n]

Cij1j2∙∙∙j2d
S2d(xj1 , xj2 , . . . , xj2d

) ∈
〈
S2d(Q1), . . . , S2d(Q`)

〉
, i ∈ [n].

That is, there exists a vector (c1j
, . . . , cnj

, ak1m, . . . , ak(2d)m) (m ∈ [n], k ∈ [`]), such that

φ(c1j
, . . . , cnj

, ak1m, . . . , ak(2d)m) = C.

Therefore, every possible C belongs to φ(F(2d+1)nl)
⋂
{0, 1}n( n

2d) .

Further there are 2n( n
2d) distinct vectors C = (c1j1j2∙∙∙j2d

, . . . , cnj1j2∙∙∙j2d
), where cij1j2∙∙∙j2d

∈
{0, 1} , i ∈ [n], j1 <, . . . , < j2d ∈ [n]. Hence,

|φ(F(2d+1)nl)
⋂

{0, 1}n( n
2d) | ≥ 2n( n

2d).
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This implies that

(2(2d + 1))(2d+1)nl ≥ 2n( n
2d). (8)

Using the ln function on both sides:

(2d + 1)nl ln(2(2d + 1)) ≥ n

(
n

2d

)

ln 2.

Hence,

l >

(
n
2d

)
ln 2

(2d + 1) ln(4d + 2)
. (9)

Namely

l > c

(
n

2d

)

= c
n(n − 1) . . . (n − 2d + 1)

d!
= Ω

(
n2d
)

(where c ∈ F), hence

l = Ω
(
n2d
)
.

QED

C.1.2 Combining the polynomials into one

Here we show that there exists already a single polynomial, denoted P ? such that QS2d
(P ?) =

Ω(n2d). This is done in a manner which is similar to the work of Hrubeš [7]; however, there

is a further complication here, which is dealt via the technical Lemma 12.

Lemma 11. Let P1, . . . , Pn be s-polynomials in n variables x1, . . . , xn, and let z1, . . . , zn be

new variables, different from x1, . . . , xn. Let P ?:=
∑n

i=1 ziPi. Then

QS2d
(P ?) ≥

1

2d + 1
QS2d

(P1, . . . , Pn). (10)

Specifically, for any field F of characteristic 0 and every d ≥ 1, there exists a polynomial

with n variables such that QS2d
(P ?) = Ω(n2d).

Proof. For convenience, call the new variables z1, . . . , zn the Z-variables. Given a polynomial

f , the Z-homogenous part of degree j of f , denoted (f)
(j)
Z , is the sum of all monomials

where the total degree of the Z-variables is j. For example if f = z1xy + z2z1 + z3x + 1 + x,

then (f)1
Z = z1xy + z3x, (f)2

Z = z2z1, (f)0
Z = 1 + x. A polynomial that does not contain any

Z-variable is said to be Z-independent.

First, we claim the P ? has the following property:
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Claim. For any ` Z-independent polynomials G1, G2, . . . , G` ∈ F〈X〉, if

P ? ∈
〈
S2d(G1), . . . , S2d(G`)

〉
,

then

P1, . . . , Pn ∈
〈
S2d(G1), . . . , S2d(G`)

〉
.

Proof of claim: Since P ? ∈
〈
S2d(G1), . . . , S2d(G`)

〉
,

P ? =
n∑

i=1

ziPi =
∑̀

j=1

tj∑

i=1

fjiS2d(Gj)gji, for some fji, gji ∈ F〈X〉.

Now, assign z1 = 1, z2 = z3 = ∙ ∙ ∙ = zn = 0 in P ?. Since G1, . . . , G` do not contain z1, . . . , zn,

the G1, . . . , G` will remain the same. Thus,

P1 =
∑̀

j=1

tj∑

i=1

f ′jiS2d(Gj)g
′
ji,

where f ′ji = fji|z1←1,z2←0,...,zn←0, g
′
ji = gji|z1←1,z2←0,...,zn←0. Namely, P1 ∈〈

S2d(G1), . . . , S2d(G`)
〉
.

Similarly, we can show P2, . . . , Pn ∈
〈
S2d(G1), . . . , S2d(G`)

〉
. Therefore,

P1, . . . , Pn ∈
〈
S2d(G1), . . . , S2d(G`)

〉
.

Claim

In the following, assume QS2d
(P ?) = `. That is, there are k vectors of polynomials

G1, G2, . . . , G` such that

P ? ∈
〈
S2d(G1), . . . , S2d(G`)

〉
.

Namely

P ? =
n∑

i=1

ziPi =
∑̀

j=1

tj∑

i=1

fjiS2d(Gj)gji, for some fji, gji ∈ F〈X〉.

If we can find (2d+1) ∙ ` Z-independent vector of polynomials G1, G2, . . . , G(2d+1)∙` such that

P ? =
∑̀

j=1

tj∑

i=1

fjiS2d(Gj)gji ∈
〈
S2d(G1), . . . , S2d(G(2d+1)∙`)

〉
.

then we can, by the above claim, show that

P1, . . . , Pn ∈
〈
S2d(G1), . . . , S2d(G(2d+1)∙`)

〉
,
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which is the conclusion we want to prove:

QS2d
(P1, . . . , Pn) ≤ (2d + 1) ∙ `.

Now, to find the (2d + 1) ∙ ` Z-independent vectors of polynomials G1, G2, . . . , G(2d+1)∙`

which generate P ?, let [∙] be a map that maps a polynomial P ∈ F〈X〉 to a polynomial [P ]

that is defined by the following three properties:

1. The map [∙] is linear, namely [αG + βH] = α [G]+β [H] for any polynomials G,H and

α, β ∈ F; and

2. Let M be a monomial whose Z-homogenous part is of degree 1. Thus, M can be

uniquely written as M1ziM2, zi ∈ Z, where M1,M2 are Z-independent. Then

[M ] = [M1zM2] = zM2M1 ; and

3. For a monomial M whose Z-homogenous part is not of degree 1, [M ] = 0.

For convenience, in what follows, given the polynomials f, g and the vector of polynomials

H, we denote (f)0
Z , (H)0

Z , (g)0
Z by F ,H,G, respectively.

Claim. For any polynomials f1, g1, . . . , fk, gk and vector of polynomials H with variables

X1, . . . , Xn, z1, . . . , zn:

[
k∑

i=1

fiS2d(H)gi

]

∈
〈
S2d(H), S2d(H|Hj←

∑k
i=1 GiFi

)
〉

, for any j ∈ [2d].

Proof of claim: Consider the following:

[
k∑

i=1

fiS2d(H)gi

]

=

[

(
k∑

i=1

fiS2d(H)gi)
1
Z

]

by Property 3 of [∙]

=

[
k∑

i=1

(fi)
1
ZS2d(H)Gi +

k∑

i=1

2d∑

j=1

FiS2d

(
H|Hj←(Hj)1Z

)
Gi +

k∑

i=1

FiS2d(H)(gi)
1
Z

]

(by linearity of [∙]) =
k∑

i=1

[
(fi)

1
ZS2d(H)Gi

]
+

2d∑

j=1

[
k∑

i=1

FiS2d

(
H|Hj←(Hj)1Z

)
Gi

]

+
k∑

i=1

[
FiS2d(H)(gi)

1
Z

]
.

For every i ∈ [n], assume (fi)
1
Z =

∑n
i=1

∑
j gijzihij where gij , hij are Z-independent

polynomials and z1, . . . , zn are Z-variables, then

[
(fi)

1
ZS2d(H)Gi

]
=

[
n∑

i=1

∑

j

gijzihijS2d(H)Gi

]

=
n∑

i=1

∑

j

zihijS2d(H)Gigij ∈
〈
S2d(H)

〉
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where the right most equality stems from Property 2 of the map [ ∙]. Similarly, for every

i ∈ [n], we can show [
FiS2d(H)(gi)

1
Z

]
∈
〈
S2d(H)

〉
.

By Lemma 12, which is proved below, we have

[
k∑

i=1

FiS2d(H|Hj←(Hj)
1
Z
)Gi

]

∈
〈
S2d(H|Hj←

∑k
i=1 GiFi

)
〉

, for any j ∈ [2d].

Thus
[∑k

i=1 fiS2d(H)gi

]
∈
〈
S2d(H), S2d(H|Hj←

∑k
i=1 GiFi

)
〉

for any j ∈ [2d]. Claim

Note that P ? = (P ?)1
Z . By the properties of [∙] we have:

P ? = [P ?]

=

[
∑̀

j=1

tj∑

i=1

fjiS2d(Hj)gji

]

=
∑̀

j=1

[
tj∑

i=1

fjiS2d(Hj)gji

]

∈
〈
S2d(Hj), S2d(Hj|Hjq←

∑tj
m=1 GjmFjm

)
〉

for any j ∈ [`], q ∈ [2d].

Namely for P ? =
∑`

j=1

∑tj
i=1 fjiS2d(Hj)gji, we have (2d+1)∙` Z-independent polynomials

that generate P ?, concluding the theorem. QED

Lemma 12. Let X = {x1, x2, . . . , xn} and f1, g1, . . . , fk, gk ∈ F〈X〉. Let Z =

{z, z1, z2, . . . , zn} and assume that n is an even positive integer, and let P be a vector

of polynomials (P1, P2, . . . , Pn) with variable set X ∪ Z. We denote (P )0
Z , (fi)

0
Z , (gi)

0
Z by

P ,Fi,Gi, i ∈ [k], respectively. Then, for any j ∈ [n], it holds that

[
k∑

i=1

FiSn(P|Pj←(Pj)1Z
)Gi

]

∈
〈
Sn(P|Pj←

∑k
i=1 GiFi

)
〉

.

For example, when n = 2, the above lemma shows the following:

[
k∑

i=1

FiS2((P1)
1
Z ,P2)Gi

]

∈

〈

S2(
k∑

i=1

GiFi, P2)

〉

,

[
k∑

i=1

FiS2(P1, (P2)
1
Z)Gi

]

∈

〈

S2(P1,

k∑

i=1

GiFi)

〉

.
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Proof. For a fixed I ∈ [n], we have (PI)
1
Z =

∑n
i=1

∑
j UijziVij , where z ∈ Z, Uij ,Vij ∈ F〈X〉

and Uij ,Vij are Z-independent.

For a permutation σ ∈ Sn and the polynomial vector P = (P1, . . . , Pn), we let

(P )σ[i,j] =

{ ∏j
m=i Pσ(m), i ≤ j;

1, i > j.

We write Sn/m to denote the set {σ ∈ Sn | σ(m) = I}.
And define

πm =

(
1 2 ... n − m n − m + 1 n − m + 2 ... n

m + 1 m + 2 ... n m 1 ... m − 1

)

∀m ∈ [n].

Fact 13. sgn(πm) = (−1)m(n−m)+m−1 = (−1)nm−m(m−1)−1 = −1.

Fact 14. P σ[m+1,n] ∙ P σ[1,m−1] = P σπm[1,n−m] ∙ P σπm[n−m+2,n], for all σ ∈ Sn/m.

Fact 15. (Sn/m)πm = Sn/(n − m + 1).

So we have the following:

[
k∑

i=1

Fisn(P|PI←
∑n

i=1

∑
j UijziVij

)Gi

]

=

[
k∑

i=1

Fi

∑

σ∈Sn

sgn(σ)(Pσ[1,n])|PI←
∑n

i=1

∑
j UijziVij

Gi

]

=










k∑

i=1

Fi

n∑

m=1

∑

σ ∈ Sn

σ−1(i) = m

sgn(σ)(−1)m(Pσ[1,m−1]Pσ(m)Pσ[m+1,n])|PI←
∑n

i=1

∑
j UijziVij

Gi










=




k∑

i=1

Fi

n∑

m=1

∑

σ∈Sn/m

sgn(σ)(−1)m(Pσ[1,m−1]PIPσ[m+1,n])|PI←
∑n

i=1

∑
j UijziVij

Gi





=




k∑

i=1

Fi

n∑

m=1

∑

σ∈Sn/m

sgn(σ)(−1)m(Pσ[1,m−1]

n∑

i=1

∑

j

UijziVijPσ[m+1,n])Gi





=
n∑

i=1

∑

j

ziVij

n∑

m=1

∑

σ∈Sn/m

sgn(σ)(−1)mPσ[m+1,n]

(
k∑

i=1

GiFi

)

Pσ[1,m−1]Uij

=
n∑

i=1

∑

j

ziVij

n∑

m=1

∑

σ∈Sn/m

sgn(σ)(−1)mPσπm[1,n−m]

(
k∑

i=1

GiFi

)

Pσπm[n−m+2,n]Uij by Fact 14
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=
n∑

i=1

∑

j

ziVij

n∑

m=1

∑

σ∈Sn/m

sgn(σπm)sgn(πm)(−1)mPσπm[1,n−m]

(
k∑

i=1

GiFi

)

Pσπm[n−m+2,n]Uij .

let π = σπm, then ππ−1
m = σ,

=
n∑

i=1

∑

j

ziVij

n∑

m=1

∑

ππ−1
m ∈Sn/m

sgn(π)(−1)(−1)mPπ[1,n−m]

(
k∑

i=1

GiFi

)

Pπ[n−m+2,n]Uij by Fact 13

= −
n∑

i=1

∑

j

ziVij

n∑

m=1

∑

π∈Sn/(n−m+1)

sgn(π)(−1)mPπ[1,n−m]

(
k∑

i=1

GiFi

)

Pπ[n−m+2,n]Uij by Fact 15

let m′ = n − m + 1, then m = n − m′ − 1,

= −
n∑

i=1

∑

j

ziVij

n∑

m′=1

∑

π∈Sn/m′

sgn(π)(−1)n−m′+1Pπ[1,m′−1]

(
k∑

i=1

GiFi

)

Pπ[m′+1,n]Uij

= − (−1)n+1

n∑

i=1

∑

j

ziVij

n∑

m′=1

∑

π∈Sn/m′

sgn(π)(−1)m′
Pπ[1,m′−1]

(
k∑

i=1

GiFi

)

Pπ[m′+1,n]Uij

=
n∑

i=1

∑

j

ziVijSn(P|PI←
∑k

i=1 GiFi
)Uij

∈
〈
Sn(P|PI←

∑k
i=1 GiFi

)
〉

.

QED

C.1.3 Concluding the lower bound for every basis of the identities of Matd(F)

Here we show that the Ω(n2d) lower bound proved in previous sections holds (for every d > 2

and) every finite basis of the identities of Matd(F), when F is of characteristic 0. To this

end, we use several results from the theory of PI-algebras (for more on PI-theory see the

monographs [20, 6]).

A polynomial f ∈ F〈X〉 with n variables is multi-homogenous with degrees (1, . . . , 1)

(n times) if in every monomial the power of every variable x1, . . . , xn is precisely 1. In other

words, every monomial is of the form α ∙
∏n

i=1 xσ(i), for some permutation σ of order n

and some scalar α. For the sake of simplicity, we shall talk in the sequel about a multi-

homogenous polynomial of degree n, when referring to a multi-homogenous polynomial

with degrees (1, . . . , 1) (n times). Thus, any multi-homogenous polynomial with n variables

is homogenous of total-degree n.

We need the following definition:

Definition 11. A polynomial f ∈ F〈X〉 is called a commutator polynomial if it is a

linear combination of products of generalized-commutators. (We assume that 1 is a product

of an empty set of commutators.)
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For example, [x1, x2] ∙ [x3, x4] + [x1, x2, x3] is a commutator polynomial.

We need the following proposition:

Proposition 16 (Proposition 4.3.3 in [6]). If R is a unitary PI-algebra over a field F of

characteristic 0, then every identity of R can be generated by multi-homogenous commutator

polynomials.

Remark. Multi-homogenous and commutator polynomials, in the current paper, are called

multilinear and proper polynomials in [6], respectively.

Lemma 17. Let R be a unitary PI-algebra and let T be the T-ideal consisting of all identities

of R. Then T has a finite basis in which every polynomial is a multi-homogenous commutator

polynomial.

Proof. By Kemer [13], the identities of any F-algebra, for any F, can be generated by a finite

set of identities. Namely T has a finite basis {A1, , . . . , Ak}, for some positive integer k.

By Proposition 16, for a fixed identity of R, we can find finite many multi-homogenous

commutator polynomials to generate. Thus, each Ai, i ∈ [k], can be generated by finite many

multi-homogenous commutator polynomials. Then there are finite many multi-homogenous

commutator polynomials generating the basis {A1, , . . . , Ak} of T , and hence, also finite

many multi-homogenous commutator identities generating T .

QED

Lemma 18. Let f ∈ F〈X〉 be a multi-homogenous commutator polynomial with n variables.

If xi is a constant for some i ∈ [n], then f(x1, . . . , xn) ≡ 0 (that is, f is the zero polynomial).

Proof. In the proof, when we talk about the commutator, we mean the non-zero polynomial

[xt1 , . . . , xts ] for all possible t1, . . . , ts ∈ [n] and some natural number s ≥ 2. It is easy to

check that if we replace a variable by a constant c ∈ F in the commutator [xt1 , . . . , xts ], then

the commutator equals 0.

By the definition of commutator polynomial, we know

f =
m∑

i=1

ci

ki∏

j=1

Bij ,

where 0 6= ci ∈ F and m,n ∈ N, and Bij is some commutator [xi1 , . . . , xis ].

For a fixed I ∈ [n], by the definition of multi-homogenous polynomial, f must be linear in

xI , namely ci

∏ki

j=1 Bij must be linear in xI for every i ∈ [m]. Then there must be a j0 ∈ [k]

such that Bij0 is linear in xI . That is, Bij0 |xI←c = 0. Furthermore,
∏ki

j=1 Bij|xI←c = 0 for all

i ∈ [m]. Namely f |xI←c = 0. QED
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By lemma 9 and lemma 11, we know that there exist s-polynomials P1, . . . , Pn in n

variables x1, . . . , xn that are identities over Matd(F), such that putting P ?:=
∑n

i=1 ziPi, where

z1, . . . , zn are new variables, we have:

QS2d
(P ?) ≥

1

2d + 1
∙ QS2d

(P1, . . . , Pn) = Ω(n2d).

The following is the main lemma of this section:

Lemma 19. Let d > 2, and let B be some basis for the T-ideals of the identities of Matd(F).

Then, there are constants c, c′ such that for any identity P over Matd(F) of degree 2d + 1:

cQS2d
(P ) ≤ QB(P ) ≤ c′QS2d

(P ).

To prove this theorem we need the following two lemmata.

Lemma 20. For any natural number d > 2, every multi-homogenous identity (with any

number of variables) over Matd(F) of degree at most 2d + 1 is a consequence of the standard

identity S2d.

Proof. By Leron [17], we know that for any d > 2 every multi-homogenous identity of

Matd(F) with degree 2d + 1 is a consequence of the standard identity S2d. By Exercise 7.1.2

in [6], there are no identities of degree less than 2d in Matd(F) and every multi-homogenous

polynomial identity of degree 2d in Matd(F) is also a consequence of the standard identity

S2d. QED

By Lemma 17, there is a basis {A1, A2, . . . , Am} of Matd(F), where A1, . . . , Am are all

multi-homogenous commutator identities (Definition 11).

Lemma 21. Let P be an identity of Matd(F) of degree 2d + 1 and let G be a basis

{A1, A2, . . . , Am} of Matd(F), where A1, . . . , Am are all multi-homogenous commutator iden-

tities of Matd(F). And assume QG(P ) = k, that is, k is the minimal number such that exist

k substitution instances B1, B2, . . . , Bk of A1, A2, . . . , Am, for which:

P ∈ 〈B1, B2, . . . , Bk〉 .

Then, no B`, for ` ∈ [k], is a substitution instance of a basis element Aj whose degree is

greater than 2d + 1.

Proof. Assume there is Aj (for j ∈ [m]) in the basis G such that the degree of Aj(x) is

greater than 2d + 1. In the following, we show that none of B` (` ∈ [k]) is a substitution

instance of Aj .
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Assume otherwise. Hence, there is a BI , I ∈ [k], such that BI is the substitution instance

of Aj . Since Aj(x) is homogeneous, every term in Aj(x) is of degree greater than 2d + 1.

We consider the following two cases:

Case 1: Every term in the Aj(Q), which is a substitution instances of Aj(x), is of degree

greater than 2d + 1.

For convenience, given a polynomial f , we denote by f≤j the polynomial
∑j

i=0 (f)(i),

namely the sum of all homogenous parts of f of degree at most j. We consider the 2d + 1

homogenous part, that is:

P = (P )(2d+1)

∈
{

(h)(2d+1)
∣
∣ h ∈ 〈B1, B2, . . . , Bk〉

}
⊂
〈
(B1)

(≤2d+1) , . . . , (Bk)
(≤2d+1)

〉
.

But (BI)
(≤2d+1) =

(
Aj(Q)

)(≤2d+1)
= 0, because, in this case, every term in Aj(Q)

is of degree greater than 2d + 1. So P can also belong to the ideal generated by{
(B1)

(≤2d+1) , (B2)
(≤2d+1) , . . . , (Bk)

(≤2d+1)
}
\ (BI)

(≤2d+1). This means QG(P ) = k − 1 which

contradicts QG(P ) = k. Thus the assumption is false.

Case 2: There is a term of degree at most 2d+1 in Aj(Q), which is a substitution instance

of Aj(x).

But we assumed that every term in Aj(x) must be of degree greater than 2d + 1. This

means one of the coordinates of Q must be a constant. That is, Aj(Q) = 0 (by Lemma 18).

So P can be generated by {B1, B2, . . . , Bk} \ Bi. Hence, QG(P ) = k − 1, which contradicts

QG(P ) = k. Thus the assumption is false.

Now we can conclude that the assumption that there is a BI , I ∈ [k], such that BI is

a substitution instance of Aj is false. So none of B` (` ∈ [k]) is a substitution instance of

Aj . QED

We are now back to the proof of Lemma 19:

Proof. Let B be a basis {A1, A2, . . . , Am} of Matd(F), where A1, . . . , Am are all multi-

homogenous commutator identities of Matd(F). Let

(B)(≤2d+1) := {Ai ∈ B | the degree of Ai is no more than 2d + 1}.

For any identity P of Matd(F) of degree 2d + 1, by Lemma 21,

Q(B)(≤2d+1)(P ) = QB(P ).

This also means that every identity of Matd(F) of degree at most 2d + 1 can be gener-

ated by (B)(≤2d+1). Thus, S2d can be generated by (B)(≤2d+1). Write (B)(≤2d+1) as the set
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{A′1, A
′
2, . . . , A

′
m′}, m′ ≤ m, where the degree of A′i (∀i ∈ [m′]) is less than 2d+1. By Lemma

20, A′1, . . . , Am′ is generated by S2d. Then, by Equation 4 in Proposition 4, for any identity

P over Matd(F) of degree 2d + 1:

1

Q(B)(≤2d+1)(S2d)
QS2d

(P ) ≤ Q(B)(≤2d+1)(P ) ≤

(

max
B∈B′

QS2d
(B)

)

QS2d
(P ) d > 2. (11)

Namely, for every identity P of Matd(F) of degree 2d + 1,there are constants c, c′ such

that:

cQS2d
(P ) ≤ QB(P ) ≤ c′QS2d

(P ) d > 2.

QED

We can now conclude the main theorem of this section, Theorem 5, which we restate for

convenience:

Theorem 5. Let F be any field of characteristic 0. For every natural number d > 2 and for

every finite basis B of the T-ideal of identities of Matd(F), there exists an identity P over

Matd(F) of degree 2d + 1 with n variables, such that QB(P ) = Ω(n2d).

Note on the case of d = 2. When d = 2, Lemma 19 is not true. For example, the

polynomial f = [[x1, x2][x3, x4] + [x3, x4][x1, x2], x5] is an identity over Mat2(F), but in [17]

it is proved that f cannot be generated by S4. Namely the restriction d > 2 in Lemma 19,

and also in Theorem 5, is essential for our proof.

D Relations to tensor-rank

Here we show that in order to make the hard (non-explicit) instances f from Theorem 5 into

explicit ones, means finding explicit tensors with high tensor-rank. This generalizes (to any

order) a similar observation made in [7] for order 3 tensors. This means that the specific hard

instances we provide in Theorem 5 are not good candidates for proof complexity hardness,

because it is reasonable to assume they do not have small size circuits.

Definition 12. A tensor A : [n]r → F is a simple tensor if there exist r vectors a1, . . . , ar :

[n] → F such that A = a1 ⊗ ∙ ∙ ∙ ⊗ ar, where ⊗ denotes tensor product, that is, A is defined

by A(i1, i2, . . . , ir) = a1(i1) ∙ ∙ ∙ ar(ir).

Definition 13. For a tensor A, the tensor rank rank(A) is the minimal k such that there

exist k simple tensors A1, A2, . . . , Ak : [n]r → F such that A =
∑k

i=1 Ai.
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Definition 14. For a natural number n, let A be a tensor [n]r+1 → F. We define the

corresponding polynomials (from F〈X〉) of the tensor A as follows:

fj0 :=
∑

j1,j2,...,jr∈[n]

A(j0, j1, . . . , jr)Sr(xj1 , xj2 , . . . , xjr), ∀j0 ∈ [n].

By the following theorem, if we find an collection of explicit9 s-polynomials f1, . . . , fn

over Matd(F) such that QS2d
(f1, . . . , fn) is Ω(n2d), then we can find an explicit10 tensor

A : [n]2d+1 → {0, 1} with rank Ω(n2d), where the corresponding polynomials of A are the

s-polynomials f1, . . . , fn.

Theorem 22. For a natural number n, let Af1,...,fn be a tensor [n]r+1 → F and let f1, . . . , fn ∈
F〈X〉 be the corresponding polynomials of Af1,...,fn, then:

QS2d
(f1, . . . , fn) ≤ rank(Af1,...,fn).

Proof. Assume rank(Af1,...,fn) = R. Namely we can find R simple tensors A1, A2, . . . , AR

such that

Af1,...,fn =
R∑

i=1

Ai. (12)

For every i ∈ [R], by simple tensor’s definition, there exist 2d+1 vectors a
(i)
0 , a

(i)
1 , . . . , a

(i)
2d :

[n] → F such that Ai = a
(i)
0 ⊗ a

(i)
1 ⊗ ∙ ∙ ∙ ⊗ a

(i)
2d . Namely Ai(i0, i1, i2, . . . , i2d) =

a
(i)
0 (i0)a

(i)
1 (i1) ∙ ∙ ∙ a

(i)
2d (i2d), where i0, . . . , i2d ∈ [n].

Concerning the corresponding polynomials f1, . . . , fn of Af1,...,fn , for every j0 ∈ [n],

fj0 =
∑

j1,j2,...,jr∈[n]

Af1,...,fn(j0, . . . , j2d)S2d(xj1 , . . . , xj2d
)

=
∑

j1,j2,...,jr∈[n]

R∑

i=1

Ai(j0, . . . , j2d)S2d(xj1 , . . . , xj2d
) (by 12)

=
R∑

i=1

∑

j1,j2,...,jr∈[n]

Ai(j0, . . . , j2d)S2d(xj1 , . . . , xj2d
)

=
R∑

i=1

a
(i)
0 (j0)

∑

j1,j2,...,jr∈[n]

a
(i)
1 (j1) ∙ ∙ ∙ a

(i)
2d (j2d)S2d(xj1 , xj2 , . . . , xj2d

)

=
R∑

i=1

a
(i)
0 (j0)S2d

(
∑

1≤j≤n

a
(i)
1 (j)xj ,

∑

1≤j≤n

a
(i)
2 (j)xj, . . . ,

∑

1≤j≤n

a
(i)
2d (j)xj

)

9A polynomial is said to be explicit if the coefficient of a monomial of degree d is computable by algebraic
circuits of size at most poly(d), where d is a natural number.

10A tensor T : [n]r → F is called explicit if T (i1, . . . , ir) can be computed by algebraic circuits of size at
most polynomial in poly(r lg n), that is, at most polynomial in the size of the input (i1, . . . , ir).}
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=
R∑

i=1

a
(i)
0 (j0)S2d(P i)

(For convenience, write
(∑

1≤j≤n a
(i)
1 (j)xj ,

∑
1≤j≤n a

(i)
2 (j)xj , . . . ,

∑
1≤j≤n a

(i)
2d (j)xj

)
as P i, for

any i ∈ [R]).

Namely

f1, . . . , fn ∈
〈
S2d

(
P 1

)
, . . . , S2d

(
PR

)〉
.

Thus QS2d
(f1, . . . , fn) ≤ R, namely QS2d

(f1, . . . , fn) ≤ rank(Af1,...,fn). QED

By the above theorem, we have the following:

Corollary 23. If there exists a n explicit collection of s-polynomials f1, . . . , fn (that are

all identities of) Matd(F), such that QS2d
(f1, . . . , fn) = Ω(n2d), then there exists an explicit

tensor A : [n]2d+1 → {0, 1} with tensor-rank Ω(n2d).

E Matrix identities as hard proof complexity candi-

dates

Here we seek to find connections between the work we have done above to the problem of

proving lower bounds in proof complexity.

Consider a matrix identity f over Matd(F). It is a non-commutative polynomial. Let

f be a nonzero polynomial identity over Matd(F). Then f is a nonzero non-commutative

polynomial from F〈X〉. If we substitute each (matrix) variable xi in f by a d × d matrix of

entry-variables {xijk}j,k∈[n], then now f corresponds to d2 commutative zero polynomials, one

for each entry computed by f . Accordingly, let F be a non-commutative circuit computing f .

Then under the above substitution of d2 entry-variables to each variable in F , we get d2 non-

commutative circuits, each computing the zero polynomial when considered as commutative

polynomials. Formally, we define the set of d2 non-commutative circuits corresponding to

the non-commutative circuit F as follows:

Definition 15 (JF Kd, JF = 0Kd). Let F be a non-commutative circuit computing the poly-

nomial f ∈ F〈X〉, such that f is an identity of Matd(F). We define JF Kd as the set of d2

circuits which are generated from bottom to top in the circuit of F according to the following

rules:

1. every variable x in F corresponds to d2 new variables xij , i, j ∈ [d];

2. every plus gate X ⊕ Y , where X,Y represent two circuits, in F corresponds to d2 plus

gates ⊕ij , i, j ∈ [d] where each plus gate ⊕ij connects the corresponding circuit Xij and

Yij which have been generated before;
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3. every multiplication gate X ⊗ Y in F corresponds to d2 plus gates ⊕ij , i, j ∈ [d] where

each plus gate ⊕ij is connected to d multiplication gates ⊗k, k ∈ [d] which represent the

multiplication of two corresponding circuit Xik and Ykj that have been generated before.

(Formally, plus gates have fan-in two, and so ⊕ij is the root of a binary tree whose

internal nodes are all plus gates and whose d leaves are the product gates ⊗k, k ∈ [d].)

We define JF = 0Kd to be the set of equations between circuits, where each circuit in JF Kd
equals the circuit 0.

Fact 24. Since every gate in F corresponds to at most d3 gates in JF Kd, we have:

∣
∣JF Kd

∣
∣ = O

(
d3|F |

)

(where |F | denotes the size of F , that is the number of nodes in F and
∣
∣JF Kd

∣
∣ denotes the

sum of size of all circuits in JF Kd). Thus, if we fix the dimension of a matrix as a constant,

then we can claim that |JfKd| = Θ(|f |).

First, we recall the arithmetic proof system Pc(F) (introduced in [9], and almost similarly

in [8]) for deriving (commutative) polynomial identities over a field F. The system manipulate

arithmetic equations, that is, expressions of the form F = G where F,G are circuits.

Definition 16 (Arithmetic proofs Pc(F)). Let F be a field. The system Pc(F) proves equa-

tions of the form F = G, where F,G are non-commutative arithmetic circuits (over F). The

inference rules are:

F = G

G = F

F = G G = H

F = H
F1 = G1 F2 = G2

F1 + F2 = G1 + G2

F1 = G1 F2 = G2

F1 × F2 = G1 × G2

.

The axioms are equations of the following form, with F,G,H ranging over non-commutative

circuits:

Identity : F = F

Product commutativity : F ∙ G = G ∙ F

Addition commutativity : F + G = G + F

Associativity : F + (G + H) = (F + G) + H F ∙ (G ∙ H) = (F ∙ G) ∙ H

Distributivity : F ∙ (G + H) = F ∙ G + F ∙ H

Zero element : F + 0 = F F ∙ 0 = 0

Unit element : F ∙ 1 = F

Field identities : c = a + b d = a′ ∙ b′
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where a, a′, b, b′, c, d ∈ F, such that the equations hold in F.

Circuit axiom : F = F ′ if F and F ′ are (syntactically) identical when

both are un-winded into formulas.

Note that the Circuit axiom can be verified in polynomial time (see e.g., [11]).

A proof π in Pc(F) is a sequence of equations F1 = G1, F2 = G2, . . . , Fk = Gk, with Fi, Gi

circuits, such that every equation is either an axiom, or was obtained from previous equations

by one of the derivation rules. An equation Fi = Gi appearing in a proof is also called a

proof-line. Denote by | `Pc(F) F | the minimum number of lines in a Pc proof of F = 0. We

say that π is a Pc proof of a set of equations if π is a Pc and it contains all the equations in

the set as proof-lines).

For F an infinite field, f is an identity in Matd(F) iff JF = 0Kd has a Pc(F) proof.

This is easy to prove as follows: assume by contradiction otherwise, then there must be an

assignment A that makes g 6= 0. This follows since the field is infinite (and so every non zero

polynomial has an assignment that does not nullifies the polynomial). But this assignment

A (extended in any way to all entries) makes the matrix identity nonzero, in contradiction

to the assumption that it is a matrix identity.

Conjecture II. Let d be a positive natural number and let B be a (finite) basis of the T-ideal

of the identities of Matd(F). Assume that f ∈ F〈X〉 is an identity over Matd(F), and let F

be a non-commutative algebraic circuit computing f . Then, the minimal number of lines in

an arithmetic proof of the collection of d2 (entry-wise) equations JF = 0Kd corresponding to

F is lower bounded (up to a constant factor) in QB(f). And in symbols:

∣
∣ `Pc(F) JF = 0Kd

∣
∣ = Ω(QB(f)).

E.1 Conditions for exponential lower bounds

Can we, even potentially, obtain exponential lower bounds on Pc(F) proof size using the

measure QB(∙) and assuming Conjecture 1 holds? The answer is yes, under certain further

technical assumptions. We write the assumptions formally:

Assumptions:

1. Refinement of Conjecture II: Assume that for any d and any basis Bd of the

identities of Matd(F) the number of lines in any Pc(F) proof of JF = 0Kd is at least

CBd
∙ QBd

(f), where CBd
is a number depending on Bd and F is the non-commutative

arithmetic circuit computing f (this is the same as Conjecture 1 except that now CBd

is not a constant).
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2. Assume that for any sufficiently large d and any basis Bd of the identities of Matd(F),

there exists a number cBd
such that for all sufficiently large n there exists an identity

fn,d with QBd
(fn,d) ≥ cBd

∙ n2d. (The existence of such identities are known from our

unconditional lower bound.)

3. Assume that for the cBd
in item 2 above: cBd

∙ CBd
= Ω

(
1

poly(d)

)
.

4. (Variant of) Conjecture I: Assume that the non-commutative arithmetic circuit

size of fn,d is at most poly(n, d).

Corollary (assuming Assumptions 1-4 above): There exists a polynomial size (in n)

family of identities between non-commutative arithmetic circuits, for which any Pc proof

requires exponential 2Ω(n) number of proof-lines.

Proof. By the assumptions, every Pc(F)-proof of Jfn,d = 0Kd has size at least cBd
∙ CBd

∙ n2d.

Consider the family {fn,d}∞n=1, where d is a function of n, and we take d = n/4. Then, we

get the following lower bound on the number of lines in Pc(F)-proofs of the family {fn,d}∞n=1:

cBd
∙ CBd

∙ n2d =
1

poly(n/4)
nn/2 = 2Ω(n),

which (by Assumption 4) is exponential in the arithmetic circuit-size of the identities fn,d

proved. QED

Justification of assumptions. We wish to justify to a certain extent the new Assump-

tions 3 above (which lets us obtain the exponential lower bound). We shall use the s-

polynomials for this. First, note that Assumption 2 holds for the case of the s-polynomials,

by Theorem 5.

We now show that the function cBd
does not decrease too fast. By Equations 9, 10 and

11 in Section C.1, we know that for any natural number d, there is an s-polynomial f, such

that:

QBd
(f) ≥

1

Q(Bd)(≤2d+1)(S2d)

1

2d + 1

(
n
2d

)
ln 2

(2d + 1) ln(4d + 2)
.

Let Bd be a set of identities of Matd(F) that contains the S2d identities. Hence,

Q(Bd)(≤2d+1)(S2d) = 1.

Thus

QBd
(f) ≥

1

2d + 1

(
n
2d

)
ln 2

(2d + 1) ln(4d + 2)
.

40



If we let d = n/4, then

QBn/4
(f) ≥

1

n/2 + 1

(
n

n/2

)
ln 2

(n/2 + 1) ln(n + 2)
.

By Stirling’s formula, we get that n! ∼
√

2πn(n
e
)n. Hence,

(
n

n/2

)
∼ 2n+1/2

√
nπ

. Then

QBn/4
(f) = Ω

(
2n

n5/2 ln n

)

.

This shows that the function cBd
does not decrease too fast.

We can use the fact that cBd
does not decrease too fast to get the following (conditional

exponential lower bound):

Proposition 25. Suppose Assumption 1 above holds (refinement of Conjecture 1) and as-

sume that CBn/4
= Ω(1/poly(n)). Then, there exists a family of non-commutative circuits

{Fn}∞n=1 (computing the family of polynomials {fn, n
4
}∞n=1) such that the number of lines in

any Pc(F)-proof of JFn = 0Kn/4 is at least CBn/4
Ω
(

2n

n5/2 ln n

)
= Ω

(
2n

poly(n)

)
= 2Ω(n).

Note that we get only an exponential lower bound in n for the lines of proofs in Pc

in the above consequence. But this does not entail an exponential lower bound in the

size of JFn = 0Kn/4 (the latter is polynomial in the size of the circuit Fn, computing the

s-polynomials. So this proposition is presented here in order to show that at least for

some identities, the additional requirement (Assumption 3) on parameters, added to get a

conditional exponential lower bound, is attainable.

E.2 A propositional version of Conjecture II

We wish to comment on the applicability of our suggested framework, for achieving propo-

sitional Extended Frege lower bounds.

It seems that the most natural way to connect the complexity, measure QB(∙) to the

number of lines in an Extended Frege (see, e.g., [14] or [11] for a formal definition of Extended

Frege) proof is to require that the Main Open Problem states an even stronger statement.

Admittedly, this makes the new assumption, shown below, quite speculative at the moment.

Given a commutative algebraic circuit C over GF (2), we can think of the circuit equation

C = 0 as a Boolean circuit computing a tautology, instead of an algebraic circuit: interpreting

+ as XOR, ∙ as ∧, and = as logical equivalence ≡ (that is, ↔). Accordingly, we can consider

arithmetic proofs over GF (2) augmented with the Boolean axioms x2
i + xi = 0, for each

variables xi, to obtain a propositional proof system which formally is an Extended Frege

proof system (see [9]). Denote this system Pc(F) + {x2
i + xi = 0 : xi ∈ X}.

Then, there is no clear reason to rule out the following:
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Conjecture 1 for the propositional case over GF (2). Let F = GF (2), let d be a

positive natural number and let B be a (finite) basis of the identities of Matd(F). Assume

that f ∈ F〈X〉 is an identity of Matd(F), and let F be a non-commutative algebraic circuit

computing f . Then, the minimal number of lines in a Pc(F) + {x2
i + xi = 0 : xi ∈ X} proof

of the collection of d2 (entry-wise) equations JF = 0Kd corresponding to F is lower bounded

(up to a constant factor) by QB(f). And in symbols:

∣
∣ `Pc(F)+{x2

i +xi=0 : xi∈X} JF = 0Kd
∣
∣ = Ω(QB(f)). (13)

(Where, as before,
∣
∣ `Pc(F)+{x2

i +xi =0: xi∈X} JF = 0Kd
∣
∣ is the minimal size of a Pc(F)+{x2

i +

xi = 0 : xi ∈ X} proof containing all the circuit-equations in JF = 0Kd.)

Comment: One can plausibly consider the same propositional version of the main open

problem, with F being the rational numbers, and hence of characteristic 0 (for we which we

have more knowledge about QB(∙), as obtained in our work). However, the way to translate

arithmetic proofs Pc over the rationals is less immediate than the same translation for the

case of GF (2), and we have not verified formally the details of such a translation.

E.3 Hierarchy of proofs for matrix identities

The proof system Pc(F) works for proving identities over commutative fields. Here we for-

mulate a fragment of Pc(F) that proves matrix Matd(F) identities, for every given d. In what

follows, F always denotes a field of characteristic 0.

For any field F (of characteristic 0), any d ≥ 1, and any basis B of the identities of

Matd(F), we define the following proof system PMatd
(F), which is sound and complete for the

identities of Matd(F) (written as equations of non-commutative circuits): consider the proof

systems Pc(F) and replace the commutativity axiom h ∙ g = g ∙ h by a finite basis B of the

identities of Matd(F) (namely, add a new axiom H = 0 for each polynomial h in the basis,

where H is a non-commutative algebraic circuit computing h). Additionally, add the axioms

of distributivity of product over addition from both left and right (this is needed because we

do not have anymore the commutativity axiom in our system).

Since, for d > 2, the set of generators for the identities over Matd(F) are still not well

understood, we shall give an explicit formulation only of the system PMat2(F), following the

basis of identities of Mat2(F) found by Drensky [5].

Definition 17 (The system PMat2(F): proofs of identities over Mat2(F)). PMat2(F) is the

arithmetic proof system whose set of axioms consists of the following equations (ranging over

non-commutative arithmetic circuits):

Addition commutativity : f + g = g + f
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Associativity : f + (g + h) = (f + g) + f f ∙ (g ∙ h) = (f ∙ g) ∙ h

Distributivity : f ∙ (g + h) = f ∙ g + f ∙ h

(g + h) ∙ f = g ∙ f + h ∙ f

Zero element : f + 0 = f f ∙ 0 = 0

Unit element : f ∙ 1 = f

Genertators : S4(x, y, z, w) = 0 [[x, y]2, z] = 0

Field identities : c = a + b d = a′ ∙ b′

where in the Field identities a, a′, b, b′, c, d ∈ F, such that the equations hold in F.

Circuit axiom : F = F ′ if F and F ′ are (syntactically) identical when

both are un-winded into formulas.
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