12 research outputs found

    Decomposing graphs into edges and triangles

    Get PDF
    We prove the following 30 year-old conjecture of Győri and Tuza: the edges of every n-vertex graph G can be decomposed into complete graphs C1,. . .,Cℓ of orders two and three such that |C1|+···+|Cℓ| ≤ (1/2+o(1))n2. This result implies the asymptotic version of the old result of Erdős, Goodman and Pósa that asserts the existence of such a decomposition with ℓ ≤ n2/4

    Algorithms for Colourful Simplicial Depth and Medians in the Plane

    Full text link
    The colourful simplicial depth of a point x in the plane relative to a configuration of n points in k colour classes is exactly the number of closed simplices (triangles) with vertices from 3 different colour classes that contain x in their convex hull. We consider the problems of efficiently computing the colourful simplicial depth of a point x, and of finding a point, called a median, that maximizes colourful simplicial depth. For computing the colourful simplicial depth of x, our algorithm runs in time O(n log(n) + k n) in general, and O(kn) if the points are sorted around x. For finding the colourful median, we get a time of O(n^4). For comparison, the running times of the best known algorithm for the monochrome version of these problems are O(n log(n)) in general, improving to O(n) if the points are sorted around x for monochrome depth, and O(n^4) for finding a monochrome median.Comment: 17 pages, 8 figure

    Inducibility of directed paths

    Get PDF
    A long standing open problem in extremal graph theory is to describe all graphs that maximize the number of induced copies of a path on four vertices. The character of the problem changes in the setting of oriented graphs, and becomes more tractable. Here we resolve this problem in the setting of oriented graphs without transitive triangles

    Compactness and finite forcibility of graphons

    Get PDF
    Graphons are analytic objects associated with convergent sequences of graphs. Problems from extremal combinatorics and theoretical computer science led to a study of graphons determined by finitely many subgraph densities, which are referred to as finitely forcible. Following the intuition that such graphons should have finitary structure, Lovasz and Szegedy conjectured that the topological space of typical vertices of a finitely forcible graphon is always compact. We disprove the conjecture by constructing a finitely forcible graphon such that the associated space is not compact. The construction method gives a general framework for constructing finitely forcible graphons with non-trivial properties

    The tripartite-circle crossing number of graphs with two small partition classes

    Full text link
    A tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. The tripartite-circle crossing number of a tripartite graph is the minimum number of edge crossings among all its tripartite-circle drawings. We determine the exact value of the tripartite-circle crossing number of Ka,b,nK_{a,b,n}, where a,b≤2a,b\leq 2.Comment: 22 pages, 11 figures. Added new results and revised throughout. Originally appeared in arXiv:1910.06963v1, now removed from arXiv:1910.06963v

    Bounding the tripartite-circle crossing number of complete tripartite graphs

    Full text link
    A tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. We present upper and lower bounds on the minimum number of crossings in tripartite-circle drawings of Km,n,pK_{m,n,p} and the exact value for K2,2,nK_{2,2,n}. In contrast to 1- and 2-circle drawings, which may attain the Harary-Hill bound, our results imply that balanced restricted 3-circle drawings of the complete graph are not optimal

    On Crossing Numbers of Complete Tripartite and Balanced Complete Multipartite Graphs

    No full text
    The crossing number cr(G) of a graph G is the minimum number of crossings in a drawing of G in the plane with no more than two edges intersecting at any point that is not a vertex. The rectilinear crossing number (cr) over bar (G) of G is the minimum number of crossings in a such drawing of G with edges as straight line segments. Zarankiewicz proved in 1952 that (cr) over bar (K-n1,K- n2) A(n1, n2, n3) := [GRAPHICS] (left perpendicular n(j)/2 right perpendicular left perpendicular n(j)-1/2 right perpendicular left perpendicular n(k)/2 right perpendicular left perpendicular n(k)-1/2 right perpendicular + left perpendicular n(i)/2 right perpendicular left perpendicular n(i)-1/2 right perpendicular left perpendicular n(j)n(k)/2 right perpendicular), and prove (cr) over bar (K-n1,K- n2,K- n3) infinity of cr(K-n,K- n) over the maximum number of crossings in a drawing of K-n,K- n exists and is at most 1/4. We define zeta(r) := 3(r(2) - r)/8(r(2) + r-3) and show that for a fixed r and the balanced complete r- partite graph, zeta(r) is an upper bound to the limit superior of the crossing number divided by the maximum number of crossings in a drawing.This is the peer-reviewed version of the following article: Gethner, Ellen, Leslie Hogben, Bernard LidickĂ˝, Florian Pfender, Amanda Ruiz, and Michael Young. "On crossing numbers of complete tripartite and balanced complete multipartite graphs." Journal of Graph Theory 84, no. 4 (2017): 552-565, which has been published in final form at DOI: 10.1002/jgt.22041. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.</p
    corecore