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Compactness and finite forcibility of graphons∗

Roman Glebov† Daniel Král’‡ Jan Volec§

Abstract

Graphons are analytic objects associated with convergent sequences of
graphs. Problems from extremal combinatorics and theoretical computer
science led to a study of graphons determined by finitely many subgraph
densities, which are referred to as finitely forcible. Following the intuition
that such graphons should have finitary structure, Lovász and Szegedy con-
jectured that the topological space of typical vertices of a finitely forcible
graphon is always compact. We disprove the conjecture by constructing a
finitely forcible graphon such that the associated space is not compact. The
construction method gives a general framework for constructing finitely
forcible graphons with non-trivial properties.
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1 Introduction

Recently, a theory of limits of combinatorial structures emerged and attracted
substantial attention. In this paper, we study the case of limits of dense (finite)
graphs, which has been developed in a series of papers primarily by Borgs, Chayes,
Lovász, Sós, Szegedy and Vesztergombi [9–11, 38, 41]. A sequence of graphs is
convergent if the density of every graph in the graphs contained in the sequence
converges. A convergent sequence of graphs can be associated with an analytic
object which is a symmetric measurable function from the unit square [0, 1]2 to
[0, 1]; this object is referred to as a graphon. Graph limits and graphons are
also closely related to flag algebras introduced by Razborov [46], which were
successfully applied to numerous problems in extremal combinatorics [1–7,15–17,
19–21,23–30,32,34,42,44–49]. The development of the graph limit theory is also
reflected in a recent monograph by Lovász [35].

In this paper, we are concerned with finitely forcible graphons, i.e., those that
are uniquely determined (up to a natural equivalence) by finitely many subgraph
densities. Such graphons are related to uniqueness of optimal configurations in
extremal graph theory as well as to other problems. For example, a classical
result on the pseudorandomness of graphs [12, 50] asserts that a large graph is
pseudorandom if and only if the homomorphic densities of K2 and C4 are the
same as in the Erdős-Rényi random graph Gn,1/2. This result can be cast in the
language of graphons as follows: the graphon identically equal to 1/2 is uniquely
determined by homomorphic densities of K2 and C4, in particular, it is finitely
forcible. Another example that can be cast in the language of finite forcibility
is the asymptotic version of the theorem of Turán [51]: there exists a unique
graphon with edge density r−1

r
and zero density of Kr+1.

The result on the pseudorandomness of graphs mentioned above was gen-
eralized by Lovász and Sós [36], who proved that any graphon that is a step
function is finitely forcible. Lovász and Szegedy [37] found further examples of
finitely forcible graphons and studied properties of finitely forcible graphons in
general. In particular, they observed that the structure of every example of a
finitely forcible graphon they had found is somewhat simple. Formalizing this
intuition, they associated typical vertices of a graphon W with the topological
space T (W ) ⊆ L1[0, 1] (see Section 2 for definitions) and observed that all their
examples of finitely forcible graphonsW have compact and at most 1-dimensional
T (W ). This motivated the following conjectures [37, Conjectures 9 and 10].

Conjecture 1 (Lovász and Szegedy). If W is a finitely forcible graphon, then
T (W ) is a compact space.

Conjecture 2 (Lovász and Szegedy). If W is a finitely forcible graphon, then
T (W ) is finite dimensional.

In relation to the former of the conjectures, they noted that they could not
even prove that T (W ) had to be locally compact. In this paper, we present a
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construction of a finitely forcible graphon W such that T (W ) fails to be locally
compact, in particular, T (W ) is not compact.

Theorem 1. There exists a finitely forcible graphon WR such that the topological
space T (WR) is not locally compact.

In order to prove Theorem 1, we present a framework for constructing finitely
forcible graphons which uses density constraints and decorated density constraints.
The framework is inspired by the notion of flag algebras and builds on the ar-
guments used in existing constructions of finitely forcible graphons such as those
in [36, 43] (details related to the construction from [43] can be found in Sec-
tion 7). This framework can be used to construct finitely forcible graphons with
other non-trivial properties. In particular, it was used in [22] to completely dis-
prove Conjecture 2 (see Section 7 for further details), and in [14] to construct
finitely forcible graphons with no small weak regularity partitions. This line of
research culminated with [13] and [31], where the techniques set out in this paper
were used to show that any graphon can be a subgraphon of a finitely forcible
graphon.

2 Notation

In this section, we introduce notation related to the concepts used in this paper.
We use [n] to denote the set of the first n positive integers. A graph is a pair
(V,E) where E ⊆

(
V
2

)
. The elements of V are called vertices and the elements

of E are called edges . All graphs considered in this paper are finite, i.e., they
have finitely many vertices. The order of a graph G is the number of its vertices
and is denoted by |G|. The density d(H,G) of a graph H in a graph G is the
probability that a uniformly chosen subset of |H| vertices of G induces a subgraph
isomorphic to H . If |H| > |G|, we set d(H,G) = 0. A sequence of graphs (Gi)i∈N
is convergent if the sequence (d(H,Gi))i∈N converges for every graph H .

We now present basic notions from the theory of dense graph limits as de-
veloped in [9–11, 38]. A graphon W is a symmetric measurable function from
[0, 1]2 to [0, 1]. Here, symmetric stands for the property that W (x, y) = W (y, x)
for every x, y ∈ [0, 1]. We remark that, throughout the paper, we work with
the Lebesgue measure on R

d only. A W -random graph of order k is obtained by
sampling k random points x1, . . . , xk ∈ [0, 1] uniformly and independently and
joining the i-th and the j-th vertex by an edge with probability W (xi, xj). Since
the points of [0, 1] play the role of vertices, we refer to them as to vertices of W .
To simplify our notation further, if A ⊆ [0, 1] is measurable, we use |A| for its
measure. The density d(H,W ) of a graph H in a graphonW is equal to the prob-
ability that a W -random graph of order |H| is isomorphic to H . In particular,
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the following holds:

d(H,W ) =
|H|!

|Aut(H)|

∫

[0,1]|H|

∏

(i,j)∈E(H)

W (xi, xj)
∏

(i,j)6∈E(H)

(1−W (xi, xj)) dx1 · · ·dx|H|,

where Aut(H) is the automorphism group of H . One of the key results in the
theory of dense graph limits [38] asserts that for every convergent sequence (Gi)i∈N
of graphs with increasing orders, there exists a graphon W (called the limit of
the sequence) such that

d(H,W ) = lim
i→∞

d(H,Gi)

for every graphH . On the other hand, every graphonW is a limit of a convergent
sequence of graphs since the sequence ofW -random graphs with increasing orders
converges with probability one and its limit is W .

Every graphon can be assigned a topological space corresponding to its typical
vertices [39]. For a graphon W , define for u ∈ [0, 1] a function fWu (y) = W (u, y).
For an open set A ⊆ L1[0, 1], we write AW for

{
u ∈ [0, 1], fWu ∈ A

}
. Let T (W )

be the set formed by the functions f ∈ L1[0, 1] such that
∣∣UW

∣∣ > 0 for every
neighborhood U of f . The set T (W ) inherits topology from L1[0, 1]. The vertices
u ∈ [0, 1] with fWu ∈ T (W ) are called typical vertices of a graphon W . Notice
that almost every vertex is typical [39].

Two graphons W1 and W2 are weakly isomorphic if d(H,W1) = d(H,W2)
for every graph H . If ϕ : [0, 1] → [0, 1] is a measure preserving map, then the
graphon W ϕ(x, y) := W (ϕ(x), ϕ(y)) is weakly isomorphic to W . The opposite is
true in the following sense [8]: if two graphonsW1 andW2 are weakly isomorphic,
then there exist measure measure preserving maps ϕ1 : [0, 1] → [0, 1] and ϕ2 :
[0, 1] → [0, 1] such that W ϕ1

1 (x, y) = W ϕ2

2 (x, y) for almost every (x, y) ∈ [0, 1]2.
A graphon W is finitely forcible if there exist graphs H1, . . . , Hk such that

every graphonW ′ satisfying d(Hi,W ) = d(Hi,W
′) for all i ∈ {1, . . . , k} is weakly

isomorphic to W . For example, the result of Diaconis, Homes, and Janson [18]
asserts that the half graphon W∆(x, y) defined as W∆(x, y) = 1 if x+ y ≥ 1, and
W∆ = 0, otherwise, is finitely forcible. Also see [37] for further results.

When establishing that a graphon W is finitely forcible, it is possible, instead
of presenting the list of graphs H1, . . . , Hk and their densities as given in the
previous paragraph, to present a set of constraints on densities of graphs in
W such that W is the unique graphon satisfying these constraints. We now
formalize this. A constraint is an equality between two density expressions. A
density expression is a formal polynomial in graphs with real coefficients, i.e.,
a real number or a graph H are density expressions, and if D1 and D2 are two
density expression, then the sum D1+D2 and the product D1 ·D2 are also density
expressions. The evaluation of a density expression with respect to a graphon W
is the value obtained from the expression by a substition of d(H,W ) for every
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graph H in the expression. A graphon W satisfies a constraint if both sides of
the constraint are evaluated to the same. If C is a finite set of constraints and W
is the unique (up to weak isomorphism) graphon that satisfies all constraints in
C, then W is finitely forcible. Indeed, W is the unique (up to weak isomorphism)
graphon with densities of graphs appearing in C equal to their densities in W .
This holds since any graphon with the same densities satisfies all constraints in
C and thus it is weakly isomorphic to W .

We extend the notion of density expressions to rooted density expressions
based on the ideas from the concept of flag algebras from [46]. A graph is rooted
if it has m distinguished vertices numbered from 1 to m. These vertices are
referred to as roots while the other vertices are non-roots. Two rooted graphs
are compatible if the subgraphs induced by their roots are isomorphic through an
isomorphism mapping the i-th root to the i-th root of the other. Similarly, two
rooted graphs are isomorphic if there exists an isomorphism that maps the i-th
root of one of them to the i-th root of the other.

A rooted density expression is a density expression such that all graphs that
appear in the expression are mutually compatible rooted graphs. We occasionally
speak about compatible rooted density expressions to emphasize that the rooted
graphs in all of them are mutually compatible. The evaluation of a rooted density
expression for a graphonW is a random variable as defined in the next paragraph.

Fix a rooted density expression. Let H0 be the rooted graph induced by the
roots of the graphs appearing in the expression and letm = |H0|. If d(H0,W ) = 0,
then the density expression evaluates to 0 with probability one. If d(H0,W ) > 0,
we define an auxiliary function c : [0, 1]m → [0, 1] as

c(x1, . . . , xm) =




∏

(i,j)∈E(H0)

W (xi, xj)



 ·




∏

(i,j)6∈E(H0)

(1−W (xi, xj))



 .

In other words, the value c(x1, . . . , xm) is the probability that aW -random graph
is isomorphic to H0 through the identity conditioned on sampling the points
x1, . . . , xm corresponding to the vertices of the W -random graph. We next define
a probability measure µ on [0, 1]m. If A ⊆ [0, 1]m is a measurable set, then:

µ(A) =

∫
A

c(x1, . . . , xm)dx1 · · ·dxm
∫

[0,1]m
c(x1, . . . , xm)dx1 · · ·dxm

.

We now define the evaluation of the rooted density expression. We sample m
points x1, . . . , xm ∈ [0, 1] according to the probability measure µ, and substitute
for every rooted graphH in the expression the probability that aW -random graph
of order |H| with the first m vertices numbered form 1 to m is isomorphic to H
conditioned on that the points corresponding to these m vertices are x1, . . . , xm
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and these m vertices induce H0. When the values of x1, . . . , xm ∈ [0, 1] are fixed,
this probability is equal to

(|H| −m)!

|Aut(H)|

∫

[0,1]|H|−m

∏

(i,j)∈E(H)\(H0
2 )

W (xi, xj)
∏

(i,j)6∈E(H)∪(H0
2 )

(1−W (xi, xj))dxm+1 · · ·dx|H|,

where Aut(H) is the set of automorphisms of H (preserving the roots). This
defines the value of the rooted density expression as a random variable where the
randomness comes from the choice of x1, . . . , xm according to µ.

A rooted constraint is an equality between two rooted density expression D
and D′ such that the subgraphs induced by the roots in D and D′ are the same.
In particular, D − D′ is a rooted density expression. A graphon W satifies a
rooted constraint D = D′ if D −D′ evaluates to the random variable equal to 0
with probability one.

It can be shown (see, e.g., [46]) that for every rooted density expression D
with roots inducing a graph H0, there exists an ordinary density expression JDK
such that the following holds for every graphon W :

• if d(H0,W ) = 0, then JDK evaluates to 0 for W , and

• if d(H0,W ) > 0, then JDK /d(H0,W ) evaluates to the expected value of D
for W .

In particular, the evaluation of JDK for W is equal to the expected value of the
evaluation of D for W multiplied by d(H0,W ). It follows that if D = D′ is a
rooted constraint, then W satisfies the rooted constraint D = D′ if and only if
W satisfies the (ordinary) constraint J(D −D′)2K = 0. Since this allows us to
express constraints involving rooted density expressions as ordinary constraints,
we will not distinguish between the two types of constraints in the remainder of
the paper.

3 Partitioned graphons

In this section, we introduce a notion of partitioned graphons. Some of the
methods presented in this section are analogous to those used by Lovász and
Sós in [36] and by Norine [43] (see the construction in Section 7). In particular,
they used similar types of arguments to specialize their constraints to parts of
graphons they were forcing as we do in this section. However, since it is hard to
refer to any particular lemma in [36] instead of presenting a full argument, we
give all details.

A degree of a vertex u ∈ [0, 1] of a graphon W is equal to
∫

[0,1]

W (u, y)dy .
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Note that the degree is well-defined for almost every vertex of W . A graphon W
is partitioned if there exist k ∈ N and positive reals a1, . . . , ak with

∑
i ai = 1 and

distinct reals d1, . . . , dk ∈ [0, 1] such that the the set of vertices of W with degree
di has measure ai. We will often speak about partitioned graphons when having
in mind fixed values of k, a1, . . . , ak, and d1, . . . , dk, which will be clear from the
context. We will also refer to ai as the size and to di as the degree of the i-th
part.

A specific type of partition can be finitely forced as given in the next lemma.

Lemma 2. Let k be a positive integer, a1, . . . , ak positive reals summing to one,
and d1, . . . , dk distinct reals between zero and one. There exists a finite set of
constraints C such that a graphon W satisfies C if and only if the set of vertices
of W with degree di has measure ai. In other words, if and only if the graphon
W is a partitioned graphon with parts of sizes a1, . . . , ak and degrees d1, . . . , dk.

Proof. Consider the following set of constraints:

k∏

i=1

(e1 − di) = 0 , and

t
k∏

i=1, i 6=j

(e1 − di)

|
= aj

k∏

i=1, i 6=j

(dj − di) for every j ∈ [k],

where e1 is an edge with one root and one non-root. The first constraint is
satisfied if and only if the degree of almost every vertex is equal to one of the
numbers d1, . . . , dk.

Next, fix j ∈ {1, . . . , k} and consider the corresponding contraint on the
second line. The rooted density expression inside the J·K-operator evaluates to
the random variable that is equal to

k∏

i=1,i 6=j

(dj − di)

if the degree of the root vertex is dj and equal to zero if the degree is one of the
remaining numbers d1, . . . , dk. Since the left hand side of the constraint evaluates
to the expected value of this random variable, the constraint is satisfied if and
only if the vertices of degree dj have measure aj (assuming the degree of almost
every vertex is equal to one of the numbers d1, . . . , dk).

Fix a positive integer k, positive reals a1, . . . , ak summing to one, and distinct
reals d1, . . . , dk ∈ [0, 1]. We next consider partitioned graphons with k parts
described by these parameters and write Ai for the i-th part, i = 1, . . . , k. When
W is a partitioned graphon with such parts, we use Ai to denote the subset of [0, 1]
formed by the vertices of degree di. A graph H is decorated if each vertex of H is
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decorated with one of the parts A1, . . . , Ak; note that some of the vertices of H
may have the same decoration. The density of a decorated graph H in a graphon
W is the probability that a W -random graph with each vertex decorated with
the part ofW that it belongs to is isomorphic to H by an isomorphism preserving
the decorations. For example, if H is an edge with its two vertices decorated with
A1 and A2, then the density of H is the density of edges between A1 and A2, i.e.,

d(H,W ) =

∫

A1×A2

W (x, y) dx dy .

Analogously to the case of non-decorated graphs, we can define rooted deco-
rated graphs . We require that an isomorphism of two rooted decorated graphs
preserves both the numbering of the roots and the decorations of all the vertices.
In particular, two rooted decorated graphs are compatible if the subgraphs in-
duced by their roots are isomorphic through such an isomorphism. In this way,
we arrive at the notions of rooted decorated density expressions and decorated
constraints . The evaluation of a rooted decorated density expression is defined
in the same way as the evaluation of a rooted density expression, however, we
additionally condition on the root vertices to be chosen from the parts given by
the decorations.

The next lemma shows that the expressive power of decorated constraints
for partitioned graphons is the same as that of non-decorated constraints. We
will always use the lemma when it is guaranteed that the considered graphons are
partitioned. Before stating and proving the lemma, we introduce a convention for
drawing density expressions: edges of graphs are always drawn solid, non-edges
dashed, and if two vertices are not joined, then the picture represents the sum
over both possibilities. If a graph contains some roots, the roots are depicted by
square vertices, and the non-root vertices by circles. Decorations of vertices are
always drawn inside vertices. If there are more roots from the same part, then
the squares are rotated to distinguish the roots. An example of this convention
can be found in Figure 1.

Lemma 3. Let k be a positive integer, a1, . . . , ak positive reals summing to one
and d1, . . . , dk distinct reals between zero and one. For every (rooted or non-
rooted) decorated constraint D = D′, there exists a non-decorated constraint E =
E ′ such that a partitioned graphon W with k parts described by a1, . . . , ak and
d1, . . . , dk satisfies D = D′ if and only if it satisfies E = E ′.

Proof. A rooted decorated constraint can be transformed to an equivalent non-
rooted decorated constraint in the same way that we presented in the non-
decorated setting. Therefore, we assume that the constraintD = D′ is non-rooted
and we will construct an equivalent non-decorated constraint E = E ′.
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H1 = + =

Figure 1: The rooted non-decorated graph H1 from the proof of Lemma 3 when
H is an edge.

Let H be a non-rooted decorated graph with vertices v1, . . . , vn such that vi
is labeled with a part Aℓi . Let H̃ be the graph H without decorations, and let
Hi be the sum of all rooted non-decorated graphs on n+ 1 vertices with n roots
such that the roots induce H̃ (with the j-th root being vj for j = 1, . . . , n) and
the only non-root is adjacent to vi in each of the summands. An example for
i = 1 and H being an edge is given in Figure 1. We claim that the density of H
is equal to the following density expression:

|H|!

|Aut(H)|

t
n∏

i=1

k∏

j=1, j 6=ℓi

Hi − dj
dℓi − dj

|
. (1)

Indeed, if the density of H̃ is zero in a graphon W , then the above density
expression is zero and so is the density of H . Otherwise, for every choice of the n
roots, the product inside the J·K-operator is non-zero if and only if the i-th root
belongs to the part Aℓi; the product is equal to one in such case. Hence, the
value of (1) is exactly the probability that uniformly chosen n random vertices
induce a labeled copy of H such that the i-th vertex belongs to Aℓi. Let E and E ′

be non-decorated constraints obtained from D and D′, respectively, by replacing
every decorated graph H with the corresponding density expression (1). Since D
and E evaluate to the same number for every graphon and the same holds for D′

and E ′, the statement of the lemma follows.

Since the expressive power of non-decorated and decorated constraints is the
same, we will often drop the adjective decorated in the rest of the paper.

We finish this section with two corollaries of Lemma 3. Informally, the first
one says that it is possible to force a finitely forcible graphon on a part of a
partitioned graphon.

Lemma 4. Let k be a positive integer, a1, . . . , ak positive reals summing to one
and d1, . . . , dk distinct reals between zero and one. Further, let W0 be a finitely
forcible graphon and let ℓ ∈ [k]. There exists a finite set of constraints C such
that the following holds: a partitioned graphon W satisfies C if and only if there
exist a measure preserving map ϕ : [0, 1] → [0, 1] and a measure preserving map
ϕ′ from [0, aℓ] to the ℓ-part of W such that

W0(ϕ(x), ϕ(y)) =W (ϕ′(aℓx), ϕ
′(aℓy))

9



Aℓ Aℓ Aℓ Aℓ Aℓ

Aℓ′ Aℓ′ Aℓ′

= aℓ′p = aℓ′p
2 = aℓ′p

2

Figure 2: The constraints used in the proof of Lemma 5.

for almost every x, y ∈ [0, 1]2. Informally, if and only if the subgraphon induced
by the ℓ-th part of W is weakly isomorphic to W0.

Proof. Assume that W0 is forced by m constraints of the form

d(Hi,W ) = di for i ∈ [m].

The set C is formed by the following m constraints

d(H ′
i,W ) = a

|Hi|
ℓ di ,

where H ′
i is the graph Hi with all vertices decorated with the Aℓ.

The second lemma asserts the finite forcibility of a constant edge density
between parts of a partitioned graphon.

Lemma 5. Let k be a positive integer, a1, . . . , ak positive reals summing to one
and d1, . . . , dk distinct reals between zero and one. Further, let ℓ, ℓ′ ∈ [k] and
p ∈ [0, 1]. There exists a finite set of constraints C such that the following holds:
a partitioned graphon W satisfies C if and only if W (x, y) = p for almost every
x and y from the ℓ-th and ℓ′-th parts, respectively.

Proof. We first define rooted decorated graphs H , H1 and H2. The graph H is
an edge with one root; the root is decorated by Aℓ and the other vertex by Aℓ′ .
The graph H1 is a triangle with two roots; both roots are decorated by Aℓ and
the remaining vertex by Aℓ′. Finally, H2 is a cherry (a path on three vertices)
rooted at the two non-adjacent vertices; the two roots are decorated by Aℓ and
the remaining vertex by Aℓ′ .

The set C is formed by the follwoing three constraints: H = p, H1 = p2, and
H2 = p2. The three constraints are depicted in Figure 2. A graphon W satisfies
the three constraints if and only if

∫

Aℓ′

W (x, y) dy = aℓ′p and

∫

Aℓ′

W (x, y) ·W (x′, y) dy = aℓ′p
2 (2)

for almost every x and x′ from Aℓ. In particular, if W (x, y) = p for almost every
(x, y) ∈ Aℓ × Aℓ′, then W satisfies the three constraints in C.
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Part A A′ B B′ B′′ C C ′ D
Degree 3a 3.2a a 1.2a 1.4a 1.5a 1.8a 1.6a

1/3 16/45 1/9 2/15 7/45 1/12 1/5 8/45

Table 1: The degrees of vertices in the nine parts of Rademacher graphon WR,
where a = 1/9 is the common size of all parts of WR except for C.

For the “if” part of the statement of the lemma, we follow the reasoning given
in [37, proof of Lemma 3.3] and conclude that the second equation in (2) implies
that ∫

Aℓ′

W 2(x, y) dy = aℓ′p
2 (3)

for almost every x from the ℓ-th part of W . The Cauchy-Schwarz inequality used
with the first equation from (2) and the equation from (3) yields that, for almost
every x ∈ Aℓ, it holds that W (x, y) = p for almost every y ∈ Aℓ′ .

4 Rademacher Graphon

In this section, we introduce a graphon WR, which we refer to as Rademacher
graphon, from the statement of Theorem 1. The name of the graphon comes from
the fact that the adjacencies between its parts A and C resembles Rademacher
system of functions (such adjacencies also appear in [35, Example 13.30]). The
graphon WR is visualized in Figure 3. We establish that WR is finitely forcible
in the next two sections.

The graphon WR has eight parts. Instead of using A1, . . . , A8 for its parts, we
use A, A′, B, B′, B′′, C, C ′ and D. All the parts except for C have the same size
a = 1/9; the size of C is 2a = 2/9. Let ℓA, ℓA′, ℓB, ℓB′ , ℓB′′ , ℓC , ℓC′ and ℓD be 0,
a, 2a, 3a, 4a, 5a, 7a and 8a, respectively. The part Z ∈ {A,A′, B, B′, B′′, C ′, D}
of WR will be formed by the interval [ℓZ , ℓZ + a) and the part C by the interval
[ℓC , ℓC + 2a).

For x ∈ [0, 1), let us denote by 〈x〉 the smallest integer k such that x+2−k < 1.
Note that 〈x〉 − 1 is equal to the number of consecutive non-zero bits after the
decimal point in the binary representation of x. We next define the values of
WR(x, y) for (x, y) ∈ [0, 1)2, i.e., when both x and y belong to one of the eight
parts; if x = 1 or y = 1, we may set the values arbitrarily (since this concerns
the values for a set of measure zero), for example, to zero. The value of WR(x, y)
is equal to 1 in the following cases:

• x, y ∈ A and
〈
x−ℓA
a

〉
6=
〈
y−ℓA
a

〉
,

• x, y ∈ A′ and
〈
x−ℓA′

a

〉
6=
〈
y−ℓA′

a

〉
,

11



A A′ B B′ B′′ C C ′ D

A

A′

B

B′

B′′

C

C ′

D

Figure 3: Rademacher graphon WR.
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• x ∈ A, y ∈ A′ and
〈
x−ℓA
a

〉
=
〈
y−ℓA′

a

〉
,

• x ∈ A, y ∈ B and (x− ℓA) + (y − ℓB) ≤ a,

• x ∈ A, y ∈ B′′ and (x− ℓA) + (y − ℓB′′) ≥ a,

• x ∈ A′, y ∈ B′ and (x− ℓA′) + (y − ℓB′) ≤ a,

• x ∈ A′, y ∈ B′′ and y − ℓB′′ ≤ x− ℓA′,

• x, y ∈ B and (x− ℓB) + (y − ℓB) ≥ a,

• x, y ∈ B′ and (x− ℓB′) + (y − ℓB′) ≥ a,

• x, y ∈ C ′ and (x− ℓC′) + (y − ℓC′) ≥ a,

• x ∈ A, y ∈ C and

⌊
y−ℓC
2a

· 2

〈

x−ℓA
a

〉

⌋
is even, and

• x ∈ A′, y ∈ C ′ and

(
1− 2

−
〈

x−ℓ
A′
a

〉

−
x−ℓA′

a

)
· 2

〈

x−ℓ
A′
a

〉

+
y−ℓC′

a
≤ 1.

If x ∈ A′, y ∈ C and

⌊
y−ℓC
2a

· 2

〈

x−ℓ
A′
a

〉

⌋
is even, then

WR(x, y) =

(
1− 2

−
〈

x−ℓ
A′
a

〉

−
x− ℓA′

a

)
· 2

〈

x−ℓ
A′
a

〉

.

If x, y ∈ C, then WR(x, y) = 3/4 if (x− ℓC) + (y − ℓC) ≥ 2a. If y ∈ D, then

WR(x, y) =






0.2 if x ∈ A′ or x ∈ B′,
0.4 if x ∈ B′′, and
0.8 if x ∈ C ′.

Finally, WR(x, y) is zero if neither (x, y) nor the symmetric pair fall in any of
the described cases. It is routine to compute the degrees of vertices in the eight
parts of the just defined graphon and to check that they match the values given
in Table 1.

We finish this section with establishing that the space of typical vertices of
Rademacher graphon WR is not locally compact as claimed in Theorem 1.

Proposition 6. The topological space T (WR) is not locally compact.

Proof. Let g : [0, 1] → [0, 1] be the function defined as follows:

g(x) =






1 if x ∈ A′ ∪ B′′ ∪ C ′,
0.2 if x ∈ D, and
0 otherwise.
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Further, let gi,δ : [0, 1] → [0, 1] for i ∈ N and δ ∈ [0, 1] be defined as follows:

gi,δ(x) =





1 if x ∈ A and
〈
x−ℓA
a

〉
= i,

1 if x ∈ A′ and
〈
x−ℓA′

a

〉
6= i,

1 if x ∈ B′ and x− ℓB′ ≤ (1 + δ)2−i,
1 if x ∈ B′′ and x− ℓB′′ ≤ 1− (1 + δ)2−i,
δ if x ∈ C and

⌊
2i · x−ℓC

2a

⌋
is even,

1 if x ∈ C ′ and
x−ℓC′

a
≤ 1− δ,

0.2 if x ∈ D, and
0 otherwise.

Observe that WR (2a− (1 + δ)2−ia, y) = gi,δ(y) for every i ∈ N, δ ∈ (0, 1) and
y ∈ [0, 1]. The following two estimates on the L1-distances between g and gi,δ are
straightforward to obtain:

‖gi,δ − g‖1 = (2+2δ)·2−i+2δ
9

,

‖gi,δ − gi′,δ′‖1 = 2+2·2−i

9
|δ − δ′| if i = i′, and

‖gi,δ − gi′,δ′‖1 > δ+δ′

18
if i 6= i′.

Hence, every neighborhood of g contains gi,δ with δ < δ0 for some i ∈ N and
δ0 > 0. Consequently, g belongs to T (W ). An analogous argument yields that
gi,δ ∈ T (W ) for all i ∈ N and δ ∈ (0, 1). However, for every ε > 0, all the functions
gi,ε with i > log2 ε

−1 are at L1-distance at most ε from g and the L1-distance
between any pair of them is at least ε/9. We conclude that no neighborhood of
g in T (W ) is compact.

5 Constraints

In this section, we describe a set CR of constraints such that WR is the unique
graphon that satisfies them; this assertion is then proven in the next section. For
clarity of the exposition, the constraints are split into eight groups and each is
given a name.

Group 1: Partition constraints. The partition constraints are the (finitely
many) constraints given in Lemma 2 that are satisfied by a graphon W if
and only if W is a partitioned graphon with its parts having the same sizes
and degrees as those of WR.

Group 2: Zero constraints. The zero constraints are sixteen (non-rooted) dec-
orated constraints of the form e = 0, where e is an edge with its vertices
decorated with X and Y for

(X, Y ) ∈ { (B′′, B′′), (D,D), (A,C ′), (A,D), (A′, B), (B,B′),
(B,B′′), (B,C), (B,C ′), (B,D), (B′, B′′), (B′, C),
(B′, C ′), (B′′, C), (B′′, C ′), (C,D) }.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

A A

B B

=0

A A

B′′ B′′

=0

A′ A′

B′ B′

=0

A′ A′

B′′ B′′

=0

A′ A′

C′ C′

=0

B B

A A A

=0
B′ B′

A′ A′ A′

=0
A

A A

=0

A′

A′ A′

=0

Figure 4: The monotonicity constraints.

Group 3: Pseudorandom constraints. The pseudorandom constraints are the
rooted decorated constraints given in Lemma 5 that are satisfied by a
graphon W that has the same parts as WR if and only if the graphon
W is equal to 0.2 between the parts D and A′, to 0.2 between the parts D
and B′, to 0.4 between the parts D and B′′, and to 0.8 between the parts
D and C ′.

Group 4: Triangular constraints. For p ∈ [0, 1], letWN,p be the graphon such
that WN,p(x, y) = p if x+ y ≥ 1 and WN,p(x, y) = 0 otherwise; the graphon
WN,p is finitely forcible [37, Corollaries 3.15 and 5.2] for every p ∈ [0, 1].
The triangular constraints are the non-rooted decorated constraints given
in Lemma 4 applied with W0 = WN,1 and each of the parts B, B′ and C,
and with W0 = WN,3/4 and the part C ′.

Group 5: Monotonicity constraints. The monotonicity constraints are the
nine decorated constraints depicted in Figure 4.

Group 6: Split constraints. The split constraints are the seven decorated con-
straints depicted in Figure 5.

Group 7: Infinitary constraints. The infinitary constraints are the four dec-
orated constraints depicted in Figure 6.

Group 8: Orthogonality constraints. The orthogonality constraints are the
five decorated constraints depicted in Figure 7.

By Lemma 3, all constraints described above can be expressed as equivalent
ordinary constraints (note that the partition constraints are ordinary constraints
by themselves).
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(a) (b) (c) (d)

(e) (f) (h)

A

A

A

A′

A

B

A

B′′

A′

A

A′

A′

A′

B′

A′

B′′

A

A′ A′

A

A′ A′

C

C

C

A

+ = 1

9
+ = 1

9
+ = 1

9
+ = 1

9

=0 =0 + 3

2
= 1

6

Figure 5: The split constraints.

(a) (b)

(c) (d)

A B A

A

A B A

A

A

A

== 1

243

A′ B′ A′

A′

A′ B′ A′

A′

A′

A′

== 1

243

Figure 6: The infinitary constraints.
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(a) (b) (c)

(d)

(e)

A

C

A A

C

A A′

C

A′

C

A′

A′

A′

A′ B′

A′ A′

C

A′ A′

A′

A′ A′

B′ A′

A′ A′

A′ B′

= a = a =0

1

2a2
× =

2 2

1

4a2
× = ×

2 4

Figure 7: The orthogonality constraints. Note that a = 1/9.

6 Forcing

This section is devoted to proving that Rademacher graphon WR is the unique
graphon (up to a weak isomorphism) satisfying the constraints contained in the
set CR presented in the previous section. The proof is split into several claims,
each giving an analysis of the values of a graphon for different parts (see Table 2).
The analysis will also yield that the graphon WR satisfies all constraints in the
set CR.

We start with describing the general set up of the proof. Let W be a graphon
satisfying all constraints in CR; our aim is to show that W and WR are weakly
isomorphic. To do so, we assume that W satisfies the constraints in Group
1 (the partition constraints) and construct two measure preserving maps ϕ, ψ :
[0, 1] → [0, 1], which will be fixed for the remainder of the section. The arguments
presented further in this section will give that the graphonsW ϕ andW ψ

R are equal
almost everywhere.

Since the graphonW satisfies the partition constraints, Lemma 2 implies that
W is a partitioned graphon with parts of the same sizes and degrees as the parts
of WR. In particular, there exists a measure preserving map ϕ : [0, 1] → [0, 1]
such that each of the parts of WR is mapped by ϕ to the corresponding part of
W . To construct the map ψ, we use the following statement, which is known as
Monotone Reordering Theorem.
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A A′ B B′ B′′ C C ′ D
A 4 4 3 1 3 5 1 1
A′ 4 4 1 3 3 6 7 1
B 3 1 2 1 1 1 1 1
B′ 1 3 1 2 1 1 1 1
B′′ 3 3 1 1 1 1 1 1
C 5 6 1 1 1 2 1 1
C ′ 1 7 1 1 1 1 2 1
D 1 1 1 1 1 1 1 1

Table 2: The numbers of the claims where values of the graphon between the
given parts are analyzed.

Theorem 7. Let I be a subinterval of [0, 1]. For every measurable function
h : I → R, there exist a monotone non-decreasing function f : I → R and a
measure preserving map ψI : I → I such that h(x) = f(ϕI(x)) for almost every
x ∈ I.

Recall that A, A′, B, B′, B′′, C, C ′ and D are the half-open intervals which
form the parts of WR. The measure preserving map ψ is constructed by applying
Theorem 7 with each of the intervals A, A′, B, B′, B′′, C and C ′ to obtain non-
increasing functions fA : A→ R and fA′ : A′ → R, and non-decreasing functions
fB : B → R, fB′ : B′ → R, fB′′ : B′′ → R, fC : C → R and fC′ : C ′ → R such
that the following holds almost every x:

∀x ∈ A fA(ψ(x)) =
∫
B

W ϕ(x, y)dy ∀x ∈ A′ fA′(ψ(x)) =
∫
B′

W ϕ(x, y)dy

∀x ∈ B fB(ψ(x)) =
∫
B

W ϕ(x, y)dy ∀x ∈ B′ fB′(ψ(x)) =
∫
B′

W ϕ(x, y)dy

∀x ∈ B′′ fB′′(ψ(x)) =
∫
A

W ϕ(x, y)dy

∀x ∈ C fC(ψ(x)) =
∫
C

W ϕ(x, y)dy ∀x ∈ C ′ fC′(ψ(x)) =
∫
C′

W ϕ(x, y)dy

To complete the definition of ψ, we set ψ(x) = x for all x ∈ D and ψ(1) = 0.
We are now ready to start the analysis of the graphon W , which will even-

tually lead to the conclusion that the graphons W ϕ and W ψ
R are equal almost

everywhere.

Claim 1. If W satisfies the constraints in Groups 2 and 3 (the zero and pseudo-
random constraints), then W ϕ and W ψ

R are equal for almost every pair (x, y) from
each of the following sets: A×(B′∪C ′), A′×B, B×B′, (B∪B′∪B′′)×(B′′∪C∪C ′),
C × C ′ and D × [0, 1).

Proof. The constraints in Group 2 yield thatW ϕ(x, y) = 0 for almost every (x, y)
from the following sets: A×(B′∪C ′), B×(A′∪B′), (B∪B′∪B′′)×(B′′∪C∪C ′),
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C × C ′ and D × (A ∪ B ∪ C ∪ D). Lemma 5 yields that if W satifies the
constraints in Group 3, thenW ϕ(x, y) = 0.2 for almost every (x, y) ∈ D×(A′∪B′),
W ϕ(x, y) = 0.4 for almost every (x, y) ∈ D × B′′, and W ϕ(x, y) = 0.8 for almost
every (x, y) ∈ D×C ′. It follows that the graphons W ϕ and W ψ

R are equal almost
everywhere on the sets listed in the statement of the lemma.

Claim 2. If W satisfies the constraints in Group 4 (the triangular constraints),
then W ϕ and W ψ

R are equal for almost every pair (x, y) from each of the following
sets: B × B, B′ × B′, C × C and C ′ × C ′.

Proof. We focus on the analysis of the values of the graphons W ϕ and W ψ
R on

B×B. Recall that B = [2/9, 1/3) = [ℓB, ℓB+1/9). Lemma 4 and the choice of the
triangular constraints decorated with the part B yield that fB(ψ(x)) = ψ(x)−ℓB
for almost every x ∈ B, W ϕ(x, y) = 1 for almost every (x, y) ∈ B × B with
ψ(x)+ψ(y) ≥ 2ℓB +1/9, and W ϕ(x, y) = 0 for almost every (x, y) ∈ B×B with
ψ(x) +ψ(y) < 2ℓB +1/9. It follows that the graphons W ϕ and W ψ

R are equal for
almost every pair (x, y) ∈ B × B. The arguments that W ϕ and W ψ

R are equal
for almost every pair (x, y) ∈ B′ × B′, (x, y) ∈ C × C and (x, y) ∈ C ′ × C ′ are
analogous.

Before stating the next lemma, we introduce some additional notation. If x
is a vertex and Y is one of the parts, we write NY (x) for the set of y ∈ Y such
that W ϕ(x, y) > 0. Further, if vertices x and y belong to the same part of W ϕ,
then we write x � y iff ψ(x) ≤ ψ(y).

Claim 3. If W satisfies the constraints in Groups 2–6, then W ϕ and W ψ
R are

equal for almost every pair (x, y) from each of the following two sets: A×(B∪B′′)
and A′ × (B′ ∪ B′′).

Proof. The constraint (a) in Figure 4 yields that W ϕ(x, y) ∈ {0, 1} for almost
every (x, y) ∈ A × B and |NB(x

′) \ NB(x)| = 0 or |NB(x) \ NB(x
′)| = 0 for

almost every pair (x, x′) ∈ A×A (otherwise, the density of the decorated graph
in the constraint would be positive). Since the function fA from the definition
of ψ is non-increasing, it follows that |NB(x

′) \ NB(x)| = 0 for almost every
x, x′ ∈ A with x � x′. Next, since the degree of every y ∈ B is 1/9 and
W ϕ(x, y) = 0 for almost every x 6∈ A∪B and almost every y ∈ B, the sets NA(y)
and {x ∈ A,ψ(x) ≤ ℓB + 1/9 − ψ(y)} differ on a set of measure zero for almost
every y ∈ B. We conclude that the graphons W ϕ and W ψ

R are equal for almost
every pair (x, y) ∈ A×B. An analogous argument involving the constraint (c) in
Figure 4 yields that W ϕ and W ψ

R are equal for almost every pair (x, y) ∈ A′×B′.
The constraint (b) in Figure 4 and the non-strict monotonicity of the function

fB′′ yield that W ϕ(x, y) ∈ {0, 1} for almost every (x, y) ∈ B′′ × A and |NA(x) \
NA(x

′)| = 0 for almost every x, x′ ∈ B′′ with x � x′. The split constraint (b) in
Figure 5 implies that |NB(y) +NB′′(y)| = 1/9 for almost every y ∈ A. It follows
that the sets NB′′(y) and {x ∈ B′′, ψ(x) ≥ ℓB′ + 1/9 − ψ(y)} differ on a set of
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measure zero for almost every y ∈ A. In particular, the graphons W ϕ and W ψ
R

are equal for almost every pair (x, y) ∈ B′′ × A.
Since every vertex of B′′ has degree 7/45 and the graphons W ϕ and W ψ

R are
equal for almost every pair (x, y) ∈ B′′ × ([0, 1] \ A′), we derive that

∫

A′

W ϕ(x, y)dy = ℓB′ + 1/9− ψ(x)

for almost every x ∈ B′′. Using the monotonicity constraint (d) in Figure 4 and
the split constaint (d) in Figure 5, we derive in a way analogous to that used in the
previous paragraph that the sets NB′′(y) and {x ∈ B′′, ψ(x) ≤ ψ(y)− ℓB′′} differ
on a set of measure zero for almost every y ∈ A′. Consequently, the graphons
W ϕ and W ψ

R are equal for almost every pair (x, y) ∈ B′′ × A′.

We now arrive to one of the two most involved lemmas in this section.

Claim 4. If W satisfies the constraints in Groups 2–7, then W ϕ and W ψ
R are

equal for almost every pair (x, y) ∈ (A ∪ A′)× (A ∪A′).

Proof. By Claim 3, the graphons W ϕ and W ψ
R are equal for almost every pair

(x, y) ∈ A×B. The monotonicity constraint (f) in Figure 4 yields thatW ϕ(x, y) ∈
{0, 1} for almost every (x, y) ∈ A × A and that almost every point x ∈ A can
be associated with a set Jx ⊆ A such that W ϕ(x, x′) = 0 for almost every
x′ ∈ ψ−1(Jx),W

ϕ(x, x′) = 1 for almost every x′ ∈ A\ψ−1(Jx), andW
ϕ(x′, x′′) = 0

for almost every x′, x′′ ∈ ψ−1(Jx). In addition, the monotonicity constraint (h)
from Figure 4 yields that the set Jx contains ψ(x) and differs from an interval
on a set of measure zero for almost every x ∈ A (otherwise, the density of the
decorated graph depicted in the constraint (h) would be positive). Hence, we can
assume that the set Jx is an open interval for every x ∈ A; note that this interval
is uniquely determined for almost every x ∈ A. Finally, the constraint (f) yields
that there exists a set Z of measure zero such that the intervals Jx and Jx′ are
either the same or disjoint for all x, x′′ ∈ A \ Z. By including additional points
to Z while keeping its measure to be zero, we can assume that the following
holds for all points x ∈ A \ Z: W ϕ(x, x′) = 0 for almost every x′ ∈ ψ−1(Jx),
W ϕ(x, x′) = 1 for almost every x′ ∈ A \ ψ−1(Jx), and W

ϕ(x′, x′′) = 0 for almost
every x′, x′′ ∈ ψ−1(Jx).

Let J be the set of all non-empty intervals Jx, x ∈ A \Z. Since the intervals
in J are disjoint, the set J is equipped with a natural linear order. Note that the
above analysis implies that the following holds for almost every (x, x′) ∈ A× A:
W ϕ(x, x′) = 0 if and only if there exists an interval J ∈ J such that both ψ(x)
and ψ(x′) are contained in J , and W ϕ(x, x′) = 1 otherwise.

We now focus on the infinitary constraint (b) from Figure 6. Fix the leftmost
root x ∈ A\Z such that |Jx| > 0, and observe that the set of choices of vertices for
the other two roots has non-zero measure unless ψ(x) = sup Jx. If ψ(x) < sup Jx,
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consider any such choice of the remaining two roots. The left hand side of the
constraint is equal to the measure of Jx, i.e., sup Jx − inf Jx, and the right hand
side is equal to 1/9 − sup Jx. We conclude that sup Jx = 1/9 − |Jx| and so
inf Jx = 1/9 − 2|Jx|. This implies that the set J is well-ordered and countable
(recall that the intervals in J are disjoint).

Let Jk be the k-th interval contained in J . Furthermore, for k ≥ 1, define

βk =
2(1− 9 inf Jk+1)

1− 9 inf Jk
=

2|Jk+1|

|Jk|
,

and let β0 be equal to 1−9 inf J1. If the set J is finite, define βk = 0 for k ≥ |J |.
Since it holds that inf Jk+1 ≥ sup Jk, we obtain βk ≤ 1 for every k ≥ 0. We can
now express the density of non-edges with both end-vertices decorated by A as

∑

J∈J

|J |2 =
∞∑

k=1

(
1

9 · 2k

k−1∏

k′=0

βk′

)2

.

The infinitary constraint (a) in Figure 6 asserts that the above sum is equal to
1/243. However, this is possible only if βk = 1 for every k ≥ 0. It follows that
the set J is infinite and it holds

Jk =

(
1− 2−k+1

9
,
1− 2−k

9

)

for every k ∈ N. We conclude that the graphons W ϕ and W ψ
R agree almost

everywhere on A× A.
A completely analogous argument using the monotonicity constraints (g) and

(i) in Figure 4 and the infinitary constraint (c) and (d) in Figure 6 yields that
the graphons W ϕ and W ψ

R agree almost everywhere on A′ × A′. In particular,
there exists an infinite set J ′ containing intervals

J ′
k =

(
ℓA′ +

1− 2−k+1

9
, ℓA′ +

1− 2−k

9

)

for all k ∈ N, and the following holds for almost every (x, x′) ∈ A′ × A′:
W ϕ(x, x′) = 0 if and only if there exists an interval J ∈ J ′ such that both
ψ(x) and ψ(x′) are contained in J , and W ϕ(x, x′) = 1 otherwise.

To complete the proof of the lemma, we need to establish that the graphons
W ϕ andW ψ

R agree almost everywhere on A×A′. The split constraints (e) and (f)
from Figure 5 yield that for almost every x ∈ A with |NA′(x)| > 0, there exists
J ′ ∈ J ′ such the following holds: W ϕ(x, y) = 1 for almost every y ∈ ψ−1(J ′) and
W ϕ(x, y) = 0 for almost every y ∈ A′ \ ψ−1(J ′). Fix k ∈ N. Since |NA(x)| =
1 − 1

2k·9
for almost every x ∈ ψ−1(Jk), the split constraint (a) from Figure 5

implies that the measure of the interval J ′ associated with x as given above is

21



C

0

ℓC = 5/9 7/9

1/9

|NA(x)|

|J1|

C

0

ℓC = 5/9 7/9

1/9

|NA(x) \ ψ−1(J1)|

|J2|

Figure 8: Visualization of the argument used in the proof of Claim 5 to establish
that the graphons W ϕ and W ψ

R agree almost everywhere on A× C.

equal 1
2k·9

for almost every x ∈ ψ−1(Jk). Hence, for almost every x ∈ ψ−1(Jk),
the interval J ′ is the interval J ′

k. It follows that the following holds for almost
every (x, y) ∈ A × A′: W ϕ(x, y) = 1 if there exists k such that ψ(x) ∈ Jk and
ψ(y) ∈ J ′

k, and W
ϕ(x, y) = 0 otherwise. We conclude that the graphons W ϕ and

W ψ
R agree almost everywhere on A×A′.

We now come to the second main lemma of this section.

Claim 5. If W satisfies the constraints in Groups 2–8, then W ϕ and W ψ
R are

equal for almost every pair (x, y) ∈ A× C.

Proof. First note that Claims 2 and 4 guarantee that the graphons W ϕ and
W ψ
R agree almost everywhere on A × A and C × C. Further, let J be the

set of intervals from the proof of Claim 4. The orthogonality constraints (a)
and (b) from Figure 7 yield that there exist measurable subsets Ik ⊆ C with
|Ik| = a = 1/9 for every k ∈ N such that the following holds for almost every
y ∈ ψ−1(Jk): NC(y) differs from Ik on a set of measure zero and W ϕ(x, y) = 1
for almost every x ∈ Ik. In particular, the following holds for almost every
(x, y) ∈ C × A: W ϕ(x, y) = 1 if there exists k ∈ N such that x ∈ Ik and
ψ(y) ∈ Jk, and W

ϕ(x, y) = 0 otherwise. Consequently, ψ−1(Jk) is contained in
NA(x) upto a set of measure zero for almost every x ∈ Ik.

Since the function fC is non-decreasing, Claim 2 implies that

fC(ψ(x)) =
3

4
(ψ(x)− ℓC)

for almost every x ∈ C. Hence, the split constraint (h) from Figure 5 yields that

|NA(x)| =
1

9
−

1

2
(ψ(x)− ℓC)

for almost every x ∈ C. Next note that it holds |NA(x)| ≥ |J1| = 1/18 for almost
every x ∈ I1 since NA(x) contains ψ

−1(J1) upto a set of measure zero for almost
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every x ∈ I1. It follows that I1 and the set ψ−1([ℓC , ℓC + 1/9]) differ on a set of
measure zero; the argument is also visualized in Figure 8. We next iterate this
argument. In the next iteration, we observe that |NA(x)\ψ

−1(J1)| ≥ |J2| = 1/36
for almost every x ∈ I2 since NA(x) contains ψ

−1(J2) upto a set of measure zero
for almost every x ∈ I2. Hence, we get that |J1|+ |J2| ≤ |NA(x)| for almost every
x ∈ I1 ∩ I2 and |J2| ≤ |NA(x)| for almost every x ∈ I2 \ I1. It follows that I2 and
the set ψ−1([ℓC , ℓC +1/18]∪ [ℓC +1/9, ℓC +3/18]) differ on a set of measure zero.
For the next iteration, we observe that |NA(x) \ ψ

−1(J1 ∪ J2)| ≥ |J3| = 1/72 for
almost every x ∈ I3 and conclude that I3 and the set ψ−1([ℓC , ℓC + 1/36]∪ [ℓC +
1/18, ℓC + 3/36] ∪ [ℓC + 1/9, ℓC + 5/36] ∪ [ℓC + 3/18, ℓC + 7/36]) differ on a set
of measure zero. In general, we obtain that the set Ik differs from the preimage
with respect to ψ of the set

2k−1⋃

i=1

[
ℓC +

2i− 2

9 · 2k−1
, ℓC +

2i− 1

9 · 2k−1

]

on a set of measure zero for every k ∈ N. Hence, the graphons W ϕ and W ψ
R agree

almost everywhere on A× C.

We next analyze the values of the graphon, which causes the space of the
typical vertices not to be locally compact.

Claim 6. If W satisfies the constraints in Groups 2–8, then W ϕ and W ψ
R are

equal for almost every pair (x, y) ∈ A′ × C.

Proof. First note that Claims 4 and 5 guarantee that the graphons W ϕ and W ψ
R

agree almost everywhere on (A∪A′)× (A∪A′) and A×C. Let J and J ′ be the
sets of intervals from the proof of Claim 4 and let Ik, k ∈ N, be the sets from the
proof of Claim 5. To prove the assertion of this lemma, we need to show that the
following holds for almost every (x, y) ∈ A′ × C:

W ϕ(x, y) =
1− 2

−

〈

ψ(x)−ℓ
A′

a

〉

−
ψ(x)−ℓA′

a

2
−

〈

ψ(x)−ℓ
A′

a

〉 (4)

if there exists k ∈ N such that ψ(x) ∈ J ′
k and y ∈ Ik, andW

ϕ(x, y) = 0 otherwise.
The orthogonality constraint (c) from Figure 7 implies that the following holds

for every k ∈ N: the set NC(x
′) is a subset of NC(x) up to a set of measure zero

for almost every x ∈ ψ−1(Jk) and x
′ ∈ ψ−1(J ′

k). Note that NC(x) differs from Ik
on a set of measure zero for almost every x ∈ ψ−1(Jk). Hence, W

ϕ(x, y) = 0 for
almost every x ∈ ψ−1(J ′

k) and y ∈ C \ Ik.
We next interpret the orthogonality constraint (d) from Figure 7. Fix an

integer k ∈ N and a typical vertex x ∈ ψ−1(J ′
k). The first term in the product on
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the left hand side of the constraint is equal to




∫

C

W ϕ(x, y)dy




2

=




∫

Ik

W ϕ(x, y)dy




2

.

The second term in the product is equal to

|J ′
k|

2 =

(
2
−

〈

ψ(x)−ℓ
A′

a

〉

· a

)2

.

The term on the right hand side is equal to the probability that random x′ and y
chosen uniformly and independently from [0, 1] satisfy x′ ∈ ψ−1(J ′

k), y ∈ B′, and
ψ(x) < ψ(y) < ψ(x′). This probability is equal to

a2

2

(
1− 2

−

〈

ψ(x)−ℓ
A′

a

〉

−
ψ(x)− ℓA′

a

)2

.

We deduce that almost every x ∈ ψ−1(J ′
k) satisfies

∫

Ik

W ϕ(x, y)dy =
1− 2

−

〈

ψ(x)−ℓ
A′

a

〉

−
ψ(x)−ℓA′

a

2
−

〈

ψ(x)−ℓ
A′

a

〉 · a . (5)

An analogous reasoning for the orthogonality constraint (e) given in Figure 7
yields that almost every pair of vertices x, x′ ∈ ψ−1(J ′

k) satisfies

1
4a2

·

(
∫
Ik

W ϕ(x, y)W ϕ(x′, y)dy

)2

·

(
2
−

〈

ψ(x)−ℓ
A′

a

〉
)4

=

1
4

(
1− 2

−

〈

ψ(x)−ℓ
A′

a

〉

−
ψ(x)−ℓA′

a

)2

·

(
1− 2

−

〈

ψ(x′)−ℓ
A′

a

〉

−
ψ(x′)−ℓA′

a

)2

.

In the same way as in the proof of Lemma 5, we obtain from the above equality
that the following holds for almost every x ∈ ψ−1(J ′

k):



∫

Ik

W ϕ(x, y)2dy




1/2

=
1− 2

−

〈

ψ(x)−ℓ
A′

a

〉

−
ψ(x)−ℓA′

a

3 · 2
−

〈

ψ(x)−ℓ
A′

a

〉 . (6)

Using Cauchy-Schwarz Inequality, we deduce from (5) and (6) (recall that |Ik| =
a) that (4) holds for almost every x ∈ ψ−1(J ′

k) and y ∈ Ik. Hence, the graphons
W ϕ and W ψ

R agree almost everywhere on A′ × C.
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It remains to show that the graphons W ϕ and W ψ
R agree almost everywhere

on A′ × C ′.

Claim 7. If W satisfies the constraints in Groups 2–8, then W ϕ and W ψ
R are

equal for almost every pair (x, y) ∈ A′ × C ′.

Proof. The monotonicity constraint (e) from Figure 4 yields that W ϕ(x, y) ∈
{0, 1} for almost every (x, y) ∈ A×C ′ and at least one of the sets NC′(x)\NC′(x′)
or NC′(x′) \NC′(x) has measure zero and almost every pair x, x′ ∈ A′. Claims 1,
3, 4 and 6 imply that the graphons W ϕ and W ψ

R are equal for almost every pair
(x, y) ∈ A′ × ([0, 1] \ C ′). Since every vertex x ∈ A′ has degree 16/45, we obtain
that

|NC′(x)| =
1

9

(
1− 2

−

〈

ψ(x)−ℓ
A′

a

〉

−
ψ(x)− ℓA′

a

)
· 2

〈

ψ(x)−ℓ
A′

a

〉

for almost every x ∈ A′. Similarly, Claims 1 and 2 give that they are equal for
almost every pair (x, y)C ′×([0, 1]\A), which yields that |NA′(y)| = 1/9−(ψ(y)−
ℓC′) for almost every y ∈ C ′. It follows that N ′

C(x) and differs from the preimage
with respect to ψ of the set

[
ℓC′, ℓC′ +

1

9

(
1− 2

−

〈

ψ(x)−ℓ
A′

a

〉

−
ψ(x)− ℓA′

a

)
· 2

〈

ψ(x)−ℓ
A′

a

〉
)

on a set of measure zero for almost every x ∈ A′. Hence, the graphons W ϕ and
W ψ
R agree almost everywhere on A′ × C ′.

Claims 1–7 yield the following.

Corollary 8. The graphon WR is finitely forcible.

Proposition 6 and Corollary 8 together give a proof of Theorem 1.

7 Conclusion

It is quite clear that the construction of Rademacher graphon can be modified to
yield other graphons W with non-compact T (W ). Some of these modifications
can yield such graphons with a smaller number of parts at the expense of making
the argument that the graphon is finitely forcible less transparent.

In [37], finite forcibility is considered inside two classes of functions. Conjec-
ture 1, which we addressed in this paper, relates to the class they refer to as W0.
This class consists of symmetric measurable functions from [0, 1]2 to [0, 1]. A
larger class referred to as W in [37] is the class containing all symmetric measur-
able functions from [0, 1]2 to R. We remark that our arguments can be extended
to show that Rademacher graphon WR is also finitely forcible inside this larger
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class. Also note that stronger constraints involving multigraphs were used in [37]
but we have used only constraints involving simple graphs in this paper.

In [35], an analogue of the space T (W ) with respect to the following metric
is considered. If f, g ∈ L1[0, 1], then

dW (f, g) :=

∫

[0,1]

∣∣∣∣∣∣∣

∫

[0,1]

W (x, y)(f(y)− g(y))dy

∣∣∣∣∣∣∣
dx .

It is interesting to note that T (W ) is always a compact space when metrized by
dW [35, Corollary 13.28].

Since every non-compact subset of L1[0, 1] has infinite Minkowski dimension
(with the same metric as L1[0, 1]), Theorem 1 also provides a partial answer
to [37, Conjecture 10], stated here as Conjecture 2. However, the dimension is
finite when several other notions of dimension are considered, and so we do not
claim to disprove this conjecture in this paper. In [22], the first two authors and
Klimošová disprove Conjecture 2 in a more convincing way: they construct a
finitely forcible graphon W such that a subspace of T (W ) is homeomorphic to
[0, 1]∞. The graphon constructed in [22] also has infinite Minkowski dimension
with respect to the metric dW , which has implications on the sizes of its weak
regularity partitions [35, 40]. A construction of finitely forcible graphons that
require weak regularity partitions with the number of parts almost matching the
existing tight lower bound was then given in [14]. Both constructions are based
on partitioned graphons used in this paper. As we have mentioned in Section 1,
this line of research led to general framerworks for constructing complex finitely
graphons presented in [13] and [31].

We finish by presenting a construction of a finitely forcible graphonWd with a
part of T (Wd) positive measure isomorphic to [0, 1]d; the construction is analogous
to one found earlier by Norine [43]. Fix a positive integer d. We construct a
graphon Wd with 2d+ 2 parts A, B1, . . . , B2d, and C, each of size (2d+ 2)−1. If
x, y ∈ Bi, then Wd(x, y) = 1 if x + y ≥ (2d + 2)−1, i.e., Wd is the half graphon
on each B2

i . If x ∈ Bi and y ∈ C, then Wd(x, y) = Wd(y, x) = i/4d. Fix now
a measure preserving map ϕ from [0, 1] to [0, 1]d. If x ∈ A and y ∈ Bi, i ≤ d,
then Wd(x, y) =Wd(y, x) = 1 if ϕ((2d+ 2)x)i ≥ (2d+ 2)y. Finally, if x ∈ A and
y ∈ Bi, i ≥ d+ 1, then Wd(x, y) = Wd(y, x) = 1 if 1− ϕ((2d+ 2)x)i ≥ (2d+ 2)y.
The graphon Wd is equal to zero for other pairs of vertices. Clearly, Wd is a
partitioned graphon with 2d + 2 parts with vertices inside each part having the
same degree and vertices in different parts having different degrees. Using the
techniques presented in this paper and generalizing arguments from [33], one can
show that Wd is finitely forcible. Since the subspace of T (Wd) formed by typical
vertices from A is homeomorphic to [0, 1]d, the Lebesgue dimension of T (Wd) is
at least d (and the same is true for most notions of a dimension of a topological
space). This shows that finitely forcible graphons can have arbitrarily large finite
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dimension.
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