4 research outputs found

    Forced color classes, intersection graphs and the strong perfect graph conjecture

    Get PDF
    AbstractIn 1996, A. Sebő[11] raised the following two conjectures concerned with the famous Strong Perfect Graph Conjecture: (1) Suppose that a minimally imperfect graph G has a vertex p incident to 2ω(G)−2 determined edges and that its complement Ḡ has a vertex q incident to 2α(G)−2 determined edges. (An edge of G is called determined if an ω-clique of G contains both of its endpoints.) Then G is an odd hole or an odd antihole. (2) Let v0 be a vertex of a partitionable graph G. And suppose A,B to be ω-cliques of G so that v0∈A∩B. If every ω-clique K containing the vertex v0 is contained in A∪B, then G is an odd hole or an odd antihole. In this paper, we will prove (1) for a minimally imperfect graph G such that (p,q) is a determined edge of either G or Ḡ, and prove (2) for a minimally imperfect graph G such that Ḡ is C4-free and edges of Ḡ are all determined edges

    Partitionable graphs arising from near-factorizations of finite groups

    Get PDF
    AbstractIn 1979, two constructions for making partitionable graphs were introduced in (by Chvátal et al. (Ann. Discrete Math. 21 (1984) 197)). The graphs produced by the second construction are called CGPW graphs. A near-factorization (A,B) of a finite group is roughly speaking a non-trivial factorization of G minus one element into two subsets A and B. Every CGPW graph with n vertices turns out to be a Cayley graph of the cyclic group Zn, with connection set (A−A)⧹{0}, for a near-factorization (A,B) of Zn. Since a counter-example to the Strong Perfect Graph Conjecture would be a partitionable graph (Padberg, Math. Programming 6 (1974) 180), any ‘new’ construction for making partitionable graphs is of interest. In this paper, we investigate the near-factorizations of finite groups in general, and their associated Cayley graphs which are all partitionable. In particular, we show that near-factorizations of the dihedral groups produce every CGPW graph of even order. We present some results about near-factorizations of finite groups which imply that a finite abelian group with a near-factorization (A,B) such that |A|⩽4 must be cyclic (already proved by De Caen et al. (Ars Combin. 29 (1990) 53)). One of these results may be used to speed up exhaustive calculations. At last, we prove that there is no counter-example to the Strong Perfect Graph Conjecture arising from near-factorizations of a finite abelian group of even order

    Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs

    Get PDF
    In this thesis we investigate three different aspects of graph theory. Firstly, we consider interesecting systems of independent sets in graphs, and the extension of the classical theorem of Erdos, Ko and Rado to graphs. Our main results are a proof of an Erdos-Ko-Rado type theorem for a class of trees, and a class of trees which form counterexamples to a conjecture of Hurlberg and Kamat, in such a way that extends the previous counterexamples given by Baber. Secondly, we investigate perfect graphs - specifically, edge modification aspects of perfect graphs and their subclasses. We give some alternative characterisations of perfect graphs in terms of edge modification, as well as considering the possible connection of the critically perfect graphs - previously studied by Wagler - to the Strong Perfect Graph Theorem. We prove that the situation where critically perfect graphs arise has no analogue in seven different subclasses of perfect graphs (e.g. chordal, comparability graphs), and consider the connectivity of a bipartite reconfiguration-type graph associated to each of these subclasses. Thirdly, we consider a graph theoretic structure called a bireflexive graph where every vertex is both adjacent and nonadjacent to itself, and use this to characterise modular decompositions as the surjective homomorphisms of these structures. We examine some analogues of some graph theoretic notions and define a “dual” version of the reconstruction conjecture
    corecore