746 research outputs found

    Geometry of Power Flows and Optimization in Distribution Networks

    Full text link
    We investigate the geometry of injection regions and its relationship to optimization of power flows in tree networks. The injection region is the set of all vectors of bus power injections that satisfy the network and operation constraints. The geometrical object of interest is the set of Pareto-optimal points of the injection region. If the voltage magnitudes are fixed, the injection region of a tree network can be written as a linear transformation of the product of two-bus injection regions, one for each line in the network. Using this decomposition, we show that under the practical condition that the angle difference across each line is not too large, the set of Pareto-optimal points of the injection region remains unchanged by taking the convex hull. Moreover, the resulting convexified optimal power flow problem can be efficiently solved via }{ semi-definite programming or second order cone relaxations. These results improve upon earlier works by removing the assumptions on active power lower bounds. It is also shown that our practical angle assumption guarantees two other properties: (i) the uniqueness of the solution of the power flow problem, and (ii) the non-negativity of the locational marginal prices. Partial results are presented for the case when the voltage magnitudes are not fixed but can lie within certain bounds.Comment: To Appear in IEEE Transaction on Power System

    Dynamic Energy Management

    Full text link
    We present a unified method, based on convex optimization, for managing the power produced and consumed by a network of devices over time. We start with the simple setting of optimizing power flows in a static network, and then proceed to the case of optimizing dynamic power flows, i.e., power flows that change with time over a horizon. We leverage this to develop a real-time control strategy, model predictive control, which at each time step solves a dynamic power flow optimization problem, using forecasts of future quantities such as demands, capacities, or prices, to choose the current power flow values. Finally, we consider a useful extension of model predictive control that explicitly accounts for uncertainty in the forecasts. We mirror our framework with an object-oriented software implementation, an open-source Python library for planning and controlling power flows at any scale. We demonstrate our method with various examples. Appendices give more detail about the package, and describe some basic but very effective methods for constructing forecasts from historical data.Comment: 63 pages, 15 figures, accompanying open source librar

    An exact solution method for binary equilibrium problems with compensation and the power market uplift problem

    Get PDF
    We propose a novel method to find Nash equilibria in games with binary decision variables by including compensation payments and incentive-compatibility constraints from non-cooperative game theory directly into an optimization framework in lieu of using first order conditions of a linearization, or relaxation of integrality conditions. The reformulation offers a new approach to obtain and interpret dual variables to binary constraints using the benefit or loss from deviation rather than marginal relaxations. The method endogenizes the trade-off between overall (societal) efficiency and compensation payments necessary to align incentives of individual players. We provide existence results and conditions under which this problem can be solved as a mixed-binary linear program. We apply the solution approach to a stylized nodal power-market equilibrium problem with binary on-off decisions. This illustrative example shows that our approach yields an exact solution to the binary Nash game with compensation. We compare different implementations of actual market rules within our model, in particular constraints ensuring non-negative profits (no-loss rule) and restrictions on the compensation payments to non-dispatched generators. We discuss the resulting equilibria in terms of overall welfare, efficiency, and allocational equity

    Congestion management of electric distribution networks through market based methods

    Get PDF

    Distribution Locational Marginal Pricing by Convexified ACOPF and Hierarchical Dispatch

    Full text link
    • …
    corecore