3 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationOver the last decade, cyber-physical systems (CPSs) have seen significant applications in many safety-critical areas, such as autonomous automotive systems, automatic pilot avionics, wireless sensor networks, etc. A Cps uses networked embedded computers to monitor and control physical processes. The motivating example for this dissertation is the use of fault- tolerant routing protocol for a Network-on-Chip (NoC) architecture that connects electronic control units (Ecus) to regulate sensors and actuators in a vehicle. With a network allowing Ecus to communicate with each other, it is possible for them to share processing power to improve performance. In addition, networked Ecus enable flexible mapping to physical processes (e.g., sensors, actuators), which increases resilience to Ecu failures by reassigning physical processes to spare Ecus. For the on-chip routing protocol, the ability to tolerate network faults is important for hardware reconfiguration to maintain the normal operation of a system. Adding a fault-tolerance feature in a routing protocol, however, increases its design complexity, making it prone to many functional problems. Formal verification techniques are therefore needed to verify its correctness. This dissertation proposes a link-fault-tolerant, multiflit wormhole routing algorithm, and its formal modeling and verification using two different methodologies. An improvement upon the previously published fault-tolerant routing algorithm, a link-fault routing algorithm is proposed to relax the unrealistic node-fault assumptions of these algorithms, while avoiding deadlock conservatively by appropriately dropping network packets. This routing algorithm, together with its routing architecture, is then modeled in a process-algebra language LNT, and compositional verification techniques are used to verify its key functional properties. As a comparison, it is modeled using channel-level VHDL which is compiled to labeled Petri-nets (LPNs). Algorithms for a partial order reduction method on LPNs are given. An optimal result is obtained from heuristics that trace back on LPNs to find causally related enabled predecessor transitions. Key observations are made from the comparison between these two verification methodologies

    On Combining the Stubborn Set Method with the Sleep Set Method

    No full text
    Reachability analysis is a powerful formal method for analysis of concurrent and distributed finite state systems. It suffers from the state space explosion problem, however: the state space of a system can be far too large to be completely generated. This paper considers two promising methods, Valmari's stubborn set method and Godefroid's sleep set method, to avoid generating all of the state space when searching for undesirable reachable terminal states, also called deadlocks. These methods have been combined by Godefroid, Pirottin, and Wolper to further reduce the number of inspected states. However, the combination presented by them places assumptions on the stubborn sets used. This paper shows that at least in place/transition nets, the stubborn set method can be combined with the sleep set method in such a way that all reachable terminal states are found, without having to place any assumption on the stubborn sets used. This result is shown by showing a more general result which..
    corecore