9,111 research outputs found

    Distributed coloring in sparse graphs with fewer colors

    Full text link
    This paper is concerned with efficiently coloring sparse graphs in the distributed setting with as few colors as possible. According to the celebrated Four Color Theorem, planar graphs can be colored with at most 4 colors, and the proof gives a (sequential) quadratic algorithm finding such a coloring. A natural problem is to improve this complexity in the distributed setting. Using the fact that planar graphs contain linearly many vertices of degree at most 6, Goldberg, Plotkin, and Shannon obtained a deterministic distributed algorithm coloring nn-vertex planar graphs with 7 colors in O(logn)O(\log n) rounds. Here, we show how to color planar graphs with 6 colors in \mbox{polylog}(n) rounds. Our algorithm indeed works more generally in the list-coloring setting and for sparse graphs (for such graphs we improve by at least one the number of colors resulting from an efficient algorithm of Barenboim and Elkin, at the expense of a slightly worst complexity). Our bounds on the number of colors turn out to be quite sharp in general. Among other results, we show that no distributed algorithm can color every nn-vertex planar graph with 4 colors in o(n)o(n) rounds.Comment: 16 pages, 4 figures - An extended abstract of this work was presented at PODC'18 (ACM Symposium on Principles of Distributed Computing

    Coloring, List Coloring, and Painting Squares of Graphs (and other related problems)

    Full text link
    We survey work on coloring, list coloring, and painting squares of graphs; in particular, we consider strong edge-coloring. We focus primarily on planar graphs and other sparse classes of graphs.Comment: 32 pages, 13 figures and tables, plus 195-entry bibliography, comments are welcome, published as a Dynamic Survey in Electronic Journal of Combinatoric

    Weighted Coloring on P4-sparse Graphs

    Get PDF
    International audienceGiven an undirected graph G = (V, E) and a weight function w : V → R+, a vertex coloring of G is a partition of V into independent sets, or color classes. The weight of a vertex coloring of G is defined as the sum of the weights of its color classes, where the weight of a color class is the weight of a heaviest vertex belonging to it. In the WEIGHTED COLORING problem, we want to determine the minimum weight among all vertex colorings of G [1]. This problem is NP-hard on general graphs, as it reduces to determining the chromatic number when all the weights are equal. In this article we study the WEIGHTED COLORING problem on P4-sparse graphs, which are defined as graphs in which every subset of five vertices induces at most one path on four vertices [2]. This class of graphs has been extensively studied in the literature during the last decade, and many hard optimization problems are known to be in P when restricted to this class. Note that cographs (that is, P4-free graphs) are P4-sparse, and that P4-sparse graphs are P5-free. The WEIGHTED COLORING problem is in P on cographs [3] and NP-hard on P5-free graphs [4]. We show that WEIGHTED COLORING can be solved in polynomial time on a subclass of P4-sparse graphs that strictly contains cographs, and we present a 2-approximation algorithm on general P4-sparse graphs. The complexity of WEIGHTED COLORING on P4- sparse graphs remains open

    Properties of Random Graphs with Hidden Color

    Full text link
    We investigate in some detail a recently suggested general class of ensembles of sparse undirected random graphs based on a hidden stub-coloring, with or without the restriction to nondegenerate graphs. The calculability of local and global structural properties of graphs from the resulting ensembles is demonstrated. Cluster size statistics are derived with generating function techniques, yielding a well-defined percolation threshold. Explicit rules are derived for the enumeration of small subgraphs. Duality and redundancy is discussed, and subclasses corresponding to commonly studied models are identified.Comment: 14 pages, LaTeX, no figure

    Random Graphs with Hidden Color

    Full text link
    We propose and investigate a unifying class of sparse random graph models, based on a hidden coloring of edge-vertex incidences, extending an existing approach, Random graphs with a given degree distribution, in a way that admits a nontrivial correlation structure in the resulting graphs. The approach unifies a number of existing random graph ensembles within a common general formalism, and allows for the analytic calculation of observable graph characteristics. In particular, generating function techniques are used to derive the size distribution of connected components (clusters) as well as the location of the percolation threshold where a giant component appears.Comment: 4 pages, no figures, RevTe

    Linear Time Optimization Algorithms for P4-Sparse Graphs

    Get PDF
    Quite often, real-life applications suggest the study of graphs that feature some local density properties. In particular, graphs that are unlikely to have more than a few chordless paths of length three appear in a number of contexts. A graph G is P4-sparse if no set of five vertices in G induces more than one chordless path of length three. P4-sparse graphs generalize both the class of cographs and the class of P4-reducible graphs. It has been shown that P4-sparse graphs can be recognized in time linear in the size of the graph. The main contribution of this paper is to show that once the data structures returned by the recognition algorithm are in place, a number of NP-hard problems on general graphs can be solved in linear time for P4-sparse graphs. Specifically with an n-vertex P4-sparse graph as input the problems of finding a maximum size clique, maximum size stable set, a minimum coloring, a minimum covering by clique, and the size of the minimum fill-in can be solved in O(n) time, independent of the number of edges in the graph
    corecore