36 research outputs found

    On Codes for Optimal Rebuilding Access

    Get PDF
    MDS (maximum distance separable) array codes are widely used in storage systems due to their computationally efficient encoding and decoding procedures. An MDS code with r redundancy nodes can correct any r erasures by accessing (reading) all the remaining information in both the systematic nodes and the parity (redundancy) nodes. However, in practice, a single erasure is the most likely failure event; hence, a natural question is how much information do we need to access in order to rebuild a single storage node? We define the rebuilding ratio as the fraction of remaining information accessed during the rebuilding of a single erasure. In our previous work we showed that the optimal rebuilding ratio of 1/r is achievable (using our newly constructed array codes) for the rebuilding of any systematic node, however, all the information needs to be accessed for the rebuilding of the parity nodes. Namely, constructing array codes with a rebuilding ratio of 1/r was left as an open problem. In this paper, we solve this open problem and present array codes that achieve the lower bound of 1/r for rebuilding any single systematic or parity node

    Optimal Rebuilding of Multiple Erasures in MDS Codes

    Get PDF
    MDS array codes are widely used in storage systems due to their computationally efficient encoding and decoding procedures. An MDS code with rr redundancy nodes can correct any rr node erasures by accessing all the remaining information in the surviving nodes. However, in practice, ee erasures is a more likely failure event, for 1e<r1\le e<r. Hence, a natural question is how much information do we need to access in order to rebuild ee storage nodes? We define the rebuilding ratio as the fraction of remaining information accessed during the rebuilding of ee erasures. In our previous work we constructed MDS codes, called zigzag codes, that achieve the optimal rebuilding ratio of 1/r1/r for the rebuilding of any systematic node when e=1e=1, however, all the information needs to be accessed for the rebuilding of the parity node erasure. The (normalized) repair bandwidth is defined as the fraction of information transmitted from the remaining nodes during the rebuilding process. For codes that are not necessarily MDS, Dimakis et al. proposed the regenerating codes framework where any rr erasures can be corrected by accessing some of the remaining information, and any e=1e=1 erasure can be rebuilt from some subsets of surviving nodes with optimal repair bandwidth. In this work, we study 3 questions on rebuilding of codes: (i) We show a fundamental trade-off between the storage size of the node and the repair bandwidth similar to the regenerating codes framework, and show that zigzag codes achieve the optimal rebuilding ratio of e/re/r for MDS codes, for any 1er1\le e\le r. (ii) We construct systematic codes that achieve optimal rebuilding ratio of 1/r1/r, for any systematic or parity node erasure. (iii) We present error correction algorithms for zigzag codes, and in particular demonstrate how these codes can be corrected beyond their minimum Hamming distances.Comment: There is an overlap of this work with our two previous submissions: Zigzag Codes: MDS Array Codes with Optimal Rebuilding; On Codes for Optimal Rebuilding Access. arXiv admin note: text overlap with arXiv:1112.037

    New Codes and Inner Bounds for Exact Repair in Distributed Storage Systems

    Full text link
    We study the exact-repair tradeoff between storage and repair bandwidth in distributed storage systems (DSS). We give new inner bounds for the tradeoff region and provide code constructions that achieve these bounds.Comment: Submitted to the IEEE International Symposium on Information Theory (ISIT) 2014. This draft contains 8 pages and 4 figure

    An Alternate Construction of an Access-Optimal Regenerating Code with Optimal Sub-Packetization Level

    Full text link
    Given the scale of today's distributed storage systems, the failure of an individual node is a common phenomenon. Various metrics have been proposed to measure the efficacy of the repair of a failed node, such as the amount of data download needed to repair (also known as the repair bandwidth), the amount of data accessed at the helper nodes, and the number of helper nodes contacted. Clearly, the amount of data accessed can never be smaller than the repair bandwidth. In the case of a help-by-transfer code, the amount of data accessed is equal to the repair bandwidth. It follows that a help-by-transfer code possessing optimal repair bandwidth is access optimal. The focus of the present paper is on help-by-transfer codes that employ minimum possible bandwidth to repair the systematic nodes and are thus access optimal for the repair of a systematic node. The zigzag construction by Tamo et al. in which both systematic and parity nodes are repaired is access optimal. But the sub-packetization level required is rkr^k where rr is the number of parities and kk is the number of systematic nodes. To date, the best known achievable sub-packetization level for access-optimal codes is rk/rr^{k/r} in a MISER-code-based construction by Cadambe et al. in which only the systematic nodes are repaired and where the location of symbols transmitted by a helper node depends only on the failed node and is the same for all helper nodes. Under this set-up, it turns out that this sub-packetization level cannot be improved upon. In the present paper, we present an alternate construction under the same setup, of an access-optimal code repairing systematic nodes, that is inspired by the zigzag code construction and that also achieves a sub-packetization level of rk/rr^{k/r}.Comment: To appear in National Conference on Communications 201

    Access vs. Bandwidth in Codes for Storage

    Get PDF
    Maximum distance separable (MDS) codes are widely used in storage systems to protect against disk (node) failures. A node is said to have capacity ll over some field F\mathbb{F}, if it can store that amount of symbols of the field. An (n,k,l)(n,k,l) MDS code uses nn nodes of capacity ll to store kk information nodes. The MDS property guarantees the resiliency to any nkn-k node failures. An \emph{optimal bandwidth} (resp. \emph{optimal access}) MDS code communicates (resp. accesses) the minimum amount of data during the repair process of a single failed node. It was shown that this amount equals a fraction of 1/(nk)1/(n-k) of data stored in each node. In previous optimal bandwidth constructions, ll scaled polynomially with kk in codes with asymptotic rate <1<1. Moreover, in constructions with a constant number of parities, i.e. rate approaches 1, ll is scaled exponentially w.r.t. kk. In this paper, we focus on the later case of constant number of parities nk=rn-k=r, and ask the following question: Given the capacity of a node ll what is the largest number of information disks kk in an optimal bandwidth (resp. access) (k+r,k,l)(k+r,k,l) MDS code. We give an upper bound for the general case, and two tight bounds in the special cases of two important families of codes. Moreover, the bounds show that in some cases optimal-bandwidth code has larger kk than optimal-access code, and therefore these two measures are not equivalent.Comment: This paper was presented in part at the IEEE International Symposium on Information Theory (ISIT 2012). submitted to IEEE transactions on information theor

    Long MDS Codes for Optimal Repair Bandwidth

    Get PDF
    MDS codes are erasure-correcting codes that can correct the maximum number of erasures given the number of redundancy or parity symbols. If an MDS code has r parities and no more than r erasures occur, then by transmitting all the remaining data in the code one can recover the original information. However, it was shown that in order to recover a single symbol erasure, only a fraction of 1/r of the information needs to be transmitted. This fraction is called the repair bandwidth (fraction). Explicit code constructions were given in previous works. If we view each symbol in the code as a vector or a column, then the code forms a 2D array and such codes are especially widely used in storage systems. In this paper, we ask the following question: given the length of the column l, can we construct high-rate MDS array codes with optimal repair bandwidth of 1/r, whose code length is as long as possible? In this paper, we give code constructions such that the code length is (r + 1)log_r l
    corecore