13,890 research outputs found

    On Chemical Reaction Network Design by a Nested Evolution Algorithm

    Get PDF
    International audienceOne goal of synthetic biology is to implement useful functions with biochemical reactions, either by reprogramming living cells or programming artificial vesicles. In this perspective, we consider Chemical Reaction Networks (CRN) as a programming language, and investigate the CRN program synthesis problem. Recent work has shown that CRN interpreted by differential equations are Turing-complete and can be seen as analog computers where the molecular concentrations play the role of information carriers. Any real function that is computable by a Turing machine in arbitrary precision can thus be computed by a CRN over a finite set of molecular species. The proof of this result gives a numerical method to generate a finite CRN for implementing a real function presented as the solution of a Polynomial Initial Values Problem (PIVP). In this paper, we study an alternative method based on artificial evolution to build a CRN that approximates a real function given on finite sets of input values. We present a nested search algorithm that evolves the structure of the CRN and optimizes the kinetic parameters at each generation. We evaluate this algorithm on the Heaviside and Cosine functions both as functions of time and functions of input molecular species. We then compare the CRN obtained by artificial evolution both to the CRN generated by the numerical method from a PIVP definition of the function, and to the natural CRN found in the BioModels repository for switches and oscillators

    Exploiting network topology for large-scale inference of nonlinear reaction models

    Full text link
    The development of chemical reaction models aids understanding and prediction in areas ranging from biology to electrochemistry and combustion. A systematic approach to building reaction network models uses observational data not only to estimate unknown parameters, but also to learn model structure. Bayesian inference provides a natural approach to this data-driven construction of models. Yet traditional Bayesian model inference methodologies that numerically evaluate the evidence for each model are often infeasible for nonlinear reaction network inference, as the number of plausible models can be combinatorially large. Alternative approaches based on model-space sampling can enable large-scale network inference, but their realization presents many challenges. In this paper, we present new computational methods that make large-scale nonlinear network inference tractable. First, we exploit the topology of networks describing potential interactions among chemical species to design improved "between-model" proposals for reversible-jump Markov chain Monte Carlo. Second, we introduce a sensitivity-based determination of move types which, when combined with network-aware proposals, yields significant additional gains in sampling performance. These algorithms are demonstrated on inference problems drawn from systems biology, with nonlinear differential equation models of species interactions

    Stochastic kinetic models: Dynamic independence, modularity and graphs

    Full text link
    The dynamic properties and independence structure of stochastic kinetic models (SKMs) are analyzed. An SKM is a highly multivariate jump process used to model chemical reaction networks, particularly those in biochemical and cellular systems. We identify SKM subprocesses with the corresponding counting processes and propose a directed, cyclic graph (the kinetic independence graph or KIG) that encodes the local independence structure of their conditional intensities. Given a partition [A,D,B][A,D,B] of the vertices, the graphical separation A⊥B∣DA\perp B|D in the undirected KIG has an intuitive chemical interpretation and implies that AA is locally independent of BB given A∪DA\cup D. It is proved that this separation also results in global independence of the internal histories of AA and BB conditional on a history of the jumps in DD which, under conditions we derive, corresponds to the internal history of DD. The results enable mathematical definition of a modularization of an SKM using its implied dynamics. Graphical decomposition methods are developed for the identification and efficient computation of nested modularizations. Application to an SKM of the red blood cell advances understanding of this biochemical system.Comment: Published in at http://dx.doi.org/10.1214/09-AOS779 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Model validation of simple-graph representations of metabolism

    Full text link
    The large-scale properties of chemical reaction systems, such as the metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information -- lists of chemical reactions -- available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure -- network modularity (the propensity for edges to be cluster into dense groups that are sparsely connected between each other). To reach this goal, we design a model of reaction-systems where network modularity can be controlled and measure how well the reduction to simple graphs capture the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate-product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction-systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreate correlations between degree and mass of the molecules.Comment: to appear in J. Roy. Soc. Intefac

    Variable-free exploration of stochastic models: a gene regulatory network example

    Get PDF
    Finding coarse-grained, low-dimensional descriptions is an important task in the analysis of complex, stochastic models of gene regulatory networks. This task involves (a) identifying observables that best describe the state of these complex systems and (b) characterizing the dynamics of the observables. In a previous paper [13], we assumed that good observables were known a priori, and presented an equation-free approach to approximate coarse-grained quantities (i.e, effective drift and diffusion coefficients) that characterize the long-time behavior of the observables. Here we use diffusion maps [9] to extract appropriate observables ("reduction coordinates") in an automated fashion; these involve the leading eigenvectors of a weighted Laplacian on a graph constructed from network simulation data. We present lifting and restriction procedures for translating between physical variables and these data-based observables. These procedures allow us to perform equation-free coarse-grained, computations characterizing the long-term dynamics through the design and processing of short bursts of stochastic simulation initialized at appropriate values of the data-based observables.Comment: 26 pages, 9 figure

    Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art

    Full text link
    Stochasticity is a key characteristic of intracellular processes such as gene regulation and chemical signalling. Therefore, characterising stochastic effects in biochemical systems is essential to understand the complex dynamics of living things. Mathematical idealisations of biochemically reacting systems must be able to capture stochastic phenomena. While robust theory exists to describe such stochastic models, the computational challenges in exploring these models can be a significant burden in practice since realistic models are analytically intractable. Determining the expected behaviour and variability of a stochastic biochemical reaction network requires many probabilistic simulations of its evolution. Using a biochemical reaction network model to assist in the interpretation of time course data from a biological experiment is an even greater challenge due to the intractability of the likelihood function for determining observation probabilities. These computational challenges have been subjects of active research for over four decades. In this review, we present an accessible discussion of the major historical developments and state-of-the-art computational techniques relevant to simulation and inference problems for stochastic biochemical reaction network models. Detailed algorithms for particularly important methods are described and complemented with MATLAB implementations. As a result, this review provides a practical and accessible introduction to computational methods for stochastic models within the life sciences community
    • …
    corecore