980 research outputs found

    Learning with Algebraic Invariances, and the Invariant Kernel Trick

    Get PDF
    When solving data analysis problems it is important to integrate prior knowledge and/or structural invariances. This paper contributes by a novel framework for incorporating algebraic invariance structure into kernels. In particular, we show that algebraic properties such as sign symmetries in data, phase independence, scaling etc. can be included easily by essentially performing the kernel trick twice. We demonstrate the usefulness of our theory in simulations on selected applications such as sign-invariant spectral clustering and underdetermined ICA

    Representation by Integrating Reproducing Kernels

    Full text link
    Based on direct integrals, a framework allowing to integrate a parametrised family of reproducing kernels with respect to some measure on the parameter space is developed. By pointwise integration, one obtains again a reproducing kernel whose corresponding Hilbert space is given as the image of the direct integral of the individual Hilbert spaces under the summation operator. This generalises the well-known results for finite sums of reproducing kernels; however, many more special cases are subsumed under this approach: so-called Mercer kernels obtained through series expansions; kernels generated by integral transforms; mixtures of positive definite functions; and in particular scale-mixtures of radial basis functions. This opens new vistas into known results, e.g. generalising the Kramer sampling theorem; it also offers interesting connections between measurements and integral transforms, e.g. allowing to apply the representer theorem in certain inverse problems, or bounding the pointwise error in the image domain when observing the pre-image under an integral transform

    On the Inductive Bias of Neural Tangent Kernels

    Get PDF
    State-of-the-art neural networks are heavily over-parameterized, making the optimization algorithm a crucial ingredient for learning predictive models with good generalization properties. A recent line of work has shown that in a certain over-parameterized regime, the learning dynamics of gradient descent are governed by a certain kernel obtained at initialization, called the neural tangent kernel. We study the inductive bias of learning in such a regime by analyzing this kernel and the corresponding function space (RKHS). In particular, we study smoothness, approximation, and stability properties of functions with finite norm, including stability to image deformations in the case of convolutional networks, and compare to other known kernels for similar architectures.Comment: NeurIPS 201

    Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere

    Full text link
    We provide estimates for weighted Fourier sums of integrable functions defined on the sphere when the weights originate from a multiplier operator acting on the space where the function belongs. That implies refined estimates for weighted Fourier sums of integrable kernels on the sphere that satisfy an abstract H\"{o}lder condition based on a parameterized family of multiplier operators defining an approximate identity. This general estimation approach includes an important class of multipliers operators, namely, that defined by convolutions with zonal measures. The estimates are used to obtain decay rates for the eigenvalues of positive integral operators on L^2(Sm) and generated by a kernel satisfying the H\"{o}lder condition based on multiplier operators on L^2(Sm).Comment: 15 page

    Optimal intrinsic descriptors for non-rigid shape analysis

    Get PDF
    We propose novel point descriptors for 3D shapes with the potential to match two shapes representing the same object undergoing natural deformations. These deformations are more general than the often assumed isometries, and we use labeled training data to learn optimal descriptors for such cases. Furthermore, instead of explicitly defining the descriptor, we introduce new Mercer kernels, for which we formally show that their corresponding feature space mapping is a generalization of either the Heat Kernel Signature or the Wave Kernel Signature. I.e. the proposed descriptors are guaranteed to be at least as precise as any Heat Kernel Signature or Wave Kernel Signature of any parameterisation. In experiments, we show that our implicitly defined, infinite-dimensional descriptors can better deal with non-isometric deformations than state-of-the-art methods

    Determinantal point process models on the sphere

    Full text link
    We consider determinantal point processes on the dd-dimensional unit sphere Sd\mathbb S^d. These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function defined on Sd×Sd\mathbb S^d\times\mathbb S^d. We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on Sd\mathbb{S}^d, where it becomes essential to specify the eigenvalues and eigenfunctions in a spectral representation for the kernel, and we figure out how repulsive isotropic DPPs can be. Moreover, we discuss the shortcomings of adapting existing models for isotropic covariance functions and consider strategies for developing new models, including a useful spectral approach
    • …
    corecore