449 research outputs found

    On Boosting Sparse Parities

    Get PDF
    Abstract While boosting has been extensively studied, considerably less attention has been devoted to the task of designing good weak learning algorithms. In this paper we consider the problem of designing weak learners that are especially adept to the boosting procedure and specifically the AdaBoost algorithm. First we describe conditions desirable for a weak learning algorithm. We then propose using sparse parity functions as weak learners, which have many of our desired properties, as weak learners in boosting. Our experimental tests show the proposed weak learners to be competitive with the most widely used ones: decision stumps and pruned decision trees

    Agnostic Learning of Disjunctions on Symmetric Distributions

    Full text link
    We consider the problem of approximating and learning disjunctions (or equivalently, conjunctions) on symmetric distributions over {0,1}n\{0,1\}^n. Symmetric distributions are distributions whose PDF is invariant under any permutation of the variables. We give a simple proof that for every symmetric distribution D\mathcal{D}, there exists a set of nO(log(1/ϵ))n^{O(\log{(1/\epsilon)})} functions S\mathcal{S}, such that for every disjunction cc, there is function pp, expressible as a linear combination of functions in S\mathcal{S}, such that pp ϵ\epsilon-approximates cc in 1\ell_1 distance on D\mathcal{D} or ExD[c(x)p(x)]ϵ\mathbf{E}_{x \sim \mathcal{D}}[ |c(x)-p(x)|] \leq \epsilon. This directly gives an agnostic learning algorithm for disjunctions on symmetric distributions that runs in time nO(log(1/ϵ))n^{O( \log{(1/\epsilon)})}. The best known previous bound is nO(1/ϵ4)n^{O(1/\epsilon^4)} and follows from approximation of the more general class of halfspaces (Wimmer, 2010). We also show that there exists a symmetric distribution D\mathcal{D}, such that the minimum degree of a polynomial that 1/31/3-approximates the disjunction of all nn variables is 1\ell_1 distance on D\mathcal{D} is Ω(n)\Omega( \sqrt{n}). Therefore the learning result above cannot be achieved via 1\ell_1-regression with a polynomial basis used in most other agnostic learning algorithms. Our technique also gives a simple proof that for any product distribution D\mathcal{D} and every disjunction cc, there exists a polynomial pp of degree O(log(1/ϵ))O(\log{(1/\epsilon)}) such that pp ϵ\epsilon-approximates cc in 1\ell_1 distance on D\mathcal{D}. This was first proved by Blais et al. (2008) via a more involved argument

    Learning using Local Membership Queries

    Full text link
    We introduce a new model of membership query (MQ) learning, where the learning algorithm is restricted to query points that are \emph{close} to random examples drawn from the underlying distribution. The learning model is intermediate between the PAC model (Valiant, 1984) and the PAC+MQ model (where the queries are allowed to be arbitrary points). Membership query algorithms are not popular among machine learning practitioners. Apart from the obvious difficulty of adaptively querying labelers, it has also been observed that querying \emph{unnatural} points leads to increased noise from human labelers (Lang and Baum, 1992). This motivates our study of learning algorithms that make queries that are close to examples generated from the data distribution. We restrict our attention to functions defined on the nn-dimensional Boolean hypercube and say that a membership query is local if its Hamming distance from some example in the (random) training data is at most O(log(n))O(\log(n)). We show the following results in this model: (i) The class of sparse polynomials (with coefficients in R) over {0,1}n\{0,1\}^n is polynomial time learnable under a large class of \emph{locally smooth} distributions using O(log(n))O(\log(n))-local queries. This class also includes the class of O(log(n))O(\log(n))-depth decision trees. (ii) The class of polynomial-sized decision trees is polynomial time learnable under product distributions using O(log(n))O(\log(n))-local queries. (iii) The class of polynomial size DNF formulas is learnable under the uniform distribution using O(log(n))O(\log(n))-local queries in time nO(log(log(n)))n^{O(\log(\log(n)))}. (iv) In addition we prove a number of results relating the proposed model to the traditional PAC model and the PAC+MQ model

    Efficient Algorithms for Privately Releasing Marginals via Convex Relaxations

    Full text link
    Consider a database of nn people, each represented by a bit-string of length dd corresponding to the setting of dd binary attributes. A kk-way marginal query is specified by a subset SS of kk attributes, and a S|S|-dimensional binary vector β\beta specifying their values. The result for this query is a count of the number of people in the database whose attribute vector restricted to SS agrees with β\beta. Privately releasing approximate answers to a set of kk-way marginal queries is one of the most important and well-motivated problems in differential privacy. Information theoretically, the error complexity of marginal queries is well-understood: the per-query additive error is known to be at least Ω(min{n,dk2})\Omega(\min\{\sqrt{n},d^{\frac{k}{2}}\}) and at most O~(min{nd1/4,dk2})\tilde{O}(\min\{\sqrt{n} d^{1/4},d^{\frac{k}{2}}\}). However, no polynomial time algorithm with error complexity as low as the information theoretic upper bound is known for small nn. In this work we present a polynomial time algorithm that, for any distribution on marginal queries, achieves average error at most O~(ndk/24)\tilde{O}(\sqrt{n} d^{\frac{\lceil k/2 \rceil}{4}}). This error bound is as good as the best known information theoretic upper bounds for k=2k=2. This bound is an improvement over previous work on efficiently releasing marginals when kk is small and when error o(n)o(n) is desirable. Using private boosting we are also able to give nearly matching worst-case error bounds. Our algorithms are based on the geometric techniques of Nikolov, Talwar, and Zhang. The main new ingredients are convex relaxations and careful use of the Frank-Wolfe algorithm for constrained convex minimization. To design our relaxations, we rely on the Grothendieck inequality from functional analysis

    On the hardness of learning sparse parities

    Get PDF
    This work investigates the hardness of computing sparse solutions to systems of linear equations over F_2. Consider the k-EvenSet problem: given a homogeneous system of linear equations over F_2 on n variables, decide if there exists a nonzero solution of Hamming weight at most k (i.e. a k-sparse solution). While there is a simple O(n^{k/2})-time algorithm for it, establishing fixed parameter intractability for k-EvenSet has been a notorious open problem. Towards this goal, we show that unless k-Clique can be solved in n^{o(k)} time, k-EvenSet has no poly(n)2^{o(sqrt{k})} time algorithm and no polynomial time algorithm when k = (log n)^{2+eta} for any eta > 0. Our work also shows that the non-homogeneous generalization of the problem -- which we call k-VectorSum -- is W[1]-hard on instances where the number of equations is O(k log n), improving on previous reductions which produced Omega(n) equations. We also show that for any constant eps > 0, given a system of O(exp(O(k))log n) linear equations, it is W[1]-hard to decide if there is a k-sparse linear form satisfying all the equations or if every function on at most k-variables (k-junta) satisfies at most (1/2 + eps)-fraction of the equations. In the setting of computational learning, this shows hardness of approximate non-proper learning of k-parities. In a similar vein, we use the hardness of k-EvenSet to show that that for any constant d, unless k-Clique can be solved in n^{o(k)} time there is no poly(m, n)2^{o(sqrt{k}) time algorithm to decide whether a given set of m points in F_2^n satisfies: (i) there exists a non-trivial k-sparse homogeneous linear form evaluating to 0 on all the points, or (ii) any non-trivial degree d polynomial P supported on at most k variables evaluates to zero on approx. Pr_{F_2^n}[P(z) = 0] fraction of the points i.e., P is fooled by the set of points

    Algorithms and lower bounds for de Morgan formulas of low-communication leaf gates

    Get PDF
    The class FORMULA[s]GFORMULA[s] \circ \mathcal{G} consists of Boolean functions computable by size-ss de Morgan formulas whose leaves are any Boolean functions from a class G\mathcal{G}. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99]GFORMULA[n^{1.99}]\circ \mathcal{G}, for classes G\mathcal{G} of functions with low communication complexity. Let R(k)(G)R^{(k)}(\mathcal{G}) be the maximum kk-party NOF randomized communication complexity of G\mathcal{G}. We show: (1) The Generalized Inner Product function GIPnkGIP^k_n cannot be computed in FORMULA[s]GFORMULA[s]\circ \mathcal{G} on more than 1/2+ε1/2+\varepsilon fraction of inputs for s=o ⁣(n2(k4kR(k)(G)log(n/ε)log(1/ε))2). s = o \! \left ( \frac{n^2}{ \left(k \cdot 4^k \cdot {R}^{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right)^{2}} \right). As a corollary, we get an average-case lower bound for GIPnkGIP^k_n against FORMULA[n1.99]PTFk1FORMULA[n^{1.99}]\circ PTF^{k-1}. (2) There is a PRG of seed length n/2+O(sR(2)(G)log(s/ε)log(1/ε))n/2 + O\left(\sqrt{s} \cdot R^{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right) that ε\varepsilon-fools FORMULA[s]GFORMULA[s] \circ \mathcal{G}. For FORMULA[s]LTFFORMULA[s] \circ LTF, we get the better seed length O(n1/2s1/4log(n)log(n/ε))O\left(n^{1/2}\cdot s^{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right). This gives the first non-trivial PRG (with seed length o(n)o(n)) for intersections of nn half-spaces in the regime where ε1/n\varepsilon \leq 1/n. (3) There is a randomized 2nt2^{n-t}-time #\#SAT algorithm for FORMULA[s]GFORMULA[s] \circ \mathcal{G}, where t=Ω(nslog2(s)R(2)(G))1/2.t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log^2(s)\cdot R^{(2)}(\mathcal{G})}\right)^{1/2}. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]LTFFORMULA[n^{1.99}]\circ LTF. (4) The Minimum Circuit Size Problem is not in FORMULA[n1.99]XORFORMULA[n^{1.99}]\circ XOR. On the algorithmic side, we show that FORMULA[n1.99]XORFORMULA[n^{1.99}] \circ XOR can be PAC-learned in time 2O(n/logn)2^{O(n/\log n)}

    Embedding Hard Learning Problems Into Gaussian Space

    Get PDF
    We give the first representation-independent hardness result for agnostically learning halfspaces with respect to the Gaussian distribution. We reduce from the problem of learning sparse parities with noise with respect to the uniform distribution on the hypercube (sparse LPN), a notoriously hard problem in theoretical computer science and show that any algorithm for agnostically learning halfspaces requires n^Omega(log(1/epsilon)) time under the assumption that k-sparse LPN requires n^Omega(k) time, ruling out a polynomial time algorithm for the problem. As far as we are aware, this is the first representation-independent hardness result for supervised learning when the underlying distribution is restricted to be a Gaussian. We also show that the problem of agnostically learning sparse polynomials with respect to the Gaussian distribution in polynomial time is as hard as PAC learning DNFs on the uniform distribution in polynomial time. This complements the surprising result of Andoni et. al. 2013 who show that sparse polynomials are learnable under random Gaussian noise in polynomial time. Taken together, these results show the inherent difficulty of designing supervised learning algorithms in Euclidean space even in the presence of strong distributional assumptions. Our results use a novel embedding of random labeled examples from the uniform distribution on the Boolean hypercube into random labeled examples from the Gaussian distribution that allows us to relate the hardness of learning problems on two different domains and distributions
    corecore