71 research outputs found

    Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

    Full text link
    We propose a spatial diffuseness feature for deep neural network (DNN)-based automatic speech recognition to improve recognition accuracy in reverberant and noisy environments. The feature is computed in real-time from multiple microphone signals without requiring knowledge or estimation of the direction of arrival, and represents the relative amount of diffuse noise in each time and frequency bin. It is shown that using the diffuseness feature as an additional input to a DNN-based acoustic model leads to a reduced word error rate for the REVERB challenge corpus, both compared to logmelspec features extracted from noisy signals, and features enhanced by spectral subtraction.Comment: accepted for ICASSP201

    Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates

    Get PDF
    This work addresses the problem of block-online processing for multi-channel speech enhancement. Such processing is vital in scenarios with moving speakers and/or when very short utterances are processed, e.g., in voice assistant scenarios. We consider several variants of a system that performs beamforming supported by DNN-based voice activity detection (VAD) followed by post-filtering. The speaker is targeted through estimating relative transfer functions between microphones. Each block of the input signals is processed independently in order to make the method applicable in highly dynamic environments. Owing to the short length of the processed block, the statistics required by the beamformer are estimated less precisely. The influence of this inaccuracy is studied and compared to the processing regime when recordings are treated as one block (batch processing). The experimental evaluation of the proposed method is performed on large datasets of CHiME-4 and on another dataset featuring moving target speaker. The experiments are evaluated in terms of objective and perceptual criteria (such as signal-to-interference ratio (SIR) or perceptual evaluation of speech quality (PESQ), respectively). Moreover, word error rate (WER) achieved by a baseline automatic speech recognition system is evaluated, for which the enhancement method serves as a front-end solution. The results indicate that the proposed method is robust with respect to short length of the processed block. Significant improvements in terms of the criteria and WER are observed even for the block length of 250 ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article accepted for publication in IET Signal Processing journal. Original results unchanged, additional experiments presented, refined discussion and conclusion

    Multi-channel dereverberation for speech intelligibility improvement in hearing aid applications

    Get PDF

    A Study into Speech Enhancement Techniques in Adverse Environment

    Get PDF
    This dissertation developed speech enhancement techniques that improve the speech quality in applications such as mobile communications, teleconferencing and smart loudspeakers. For these applications it is necessary to suppress noise and reverberation. Thus the contribution in this dissertation is twofold: single channel speech enhancement system which exploits the temporal and spectral diversity of the received microphone signal for noise suppression and multi-channel speech enhancement method with the ability to employ spatial diversity to reduce reverberation

    Single- and multi-microphone speech dereverberation using spectral enhancement

    Get PDF
    In speech communication systems, such as voice-controlled systems, hands-free mobile telephones, and hearing aids, the received microphone signals are degraded by room reverberation, background noise, and other interferences. This signal degradation may lead to total unintelligibility of the speech and decreases the performance of automatic speech recognition systems. In the context of this work reverberation is the process of multi-path propagation of an acoustic sound from its source to one or more microphones. The received microphone signal generally consists of a direct sound, reflections that arrive shortly after the direct sound (commonly called early reverberation), and reflections that arrive after the early reverberation (commonly called late reverberation). Reverberant speech can be described as sounding distant with noticeable echo and colouration. These detrimental perceptual effects are primarily caused by late reverberation, and generally increase with increasing distance between the source and microphone. Conversely, early reverberations tend to improve the intelligibility of speech. In combination with the direct sound it is sometimes referred to as the early speech component. Reduction of the detrimental effects of reflections is evidently of considerable practical importance, and is the focus of this dissertation. More specifically the dissertation deals with dereverberation techniques, i.e., signal processing techniques to reduce the detrimental effects of reflections. In the dissertation, novel single- and multimicrophone speech dereverberation algorithms are developed that aim at the suppression of late reverberation, i.e., at estimation of the early speech component. This is done via so-called spectral enhancement techniques that require a specific measure of the late reverberant signal. This measure, called spectral variance, can be estimated directly from the received (possibly noisy) reverberant signal(s) using a statistical reverberation model and a limited amount of a priori knowledge about the acoustic channel(s) between the source and the microphone(s). In our work an existing single-channel statistical reverberation model serves as a starting point. The model is characterized by one parameter that depends on the acoustic characteristics of the environment. We show that the spectral variance estimator that is based on this model, can only be used when the source-microphone distance is larger than the so-called critical distance. This is, crudely speaking, the distance where the direct sound power is equal to the total reflective power. A generalization of the statistical reverberation model in which the direct sound is incorporated is developed. This model requires one additional parameter that is related to the ratio between the direct sound energy and the sound energy of all reflections. The generalized model is used to derive a novel spectral variance estimator. When the novel estimator is used for dereverberation rather than the existing estimator, and the source-microphone distance is smaller than the critical distance, the dereverberation performance is significantly increased. Single-microphone systems only exploit the temporal and spectral diversity of the received signal. Reverberation, of course, also induces spatial diversity. To additionally exploit this diversity, multiple microphones must be used, and their outputs must be combined by a suitable spatial processor such as the so-called delay and sum beamformer. It is not a priori evident whether spectral enhancement is best done before or after the spatial processor. For this reason we investigate both possibilities, as well as a merge of the spatial processor and the spectral enhancement technique. An advantage of the latter option is that the spectral variance estimator can be further improved. Our experiments show that the use of multiple microphones affords a significant improvement of the perceptual speech quality. The applicability of the theory developed in this dissertation is demonstrated using a hands-free communication system. Since hands-free systems are often used in a noisy and reverberant environment, the received microphone signal does not only contain the desired signal but also interferences such as room reverberation that is caused by the desired source, background noise, and a far-end echo signal that results from a sound that is produced by the loudspeaker. Usually an acoustic echo canceller is used to cancel the far-end echo. Additionally a post-processor is used to suppress background noise and residual echo, i.e., echo which could not be cancelled by the echo canceller. In this work a novel structure and post-processor for an acoustic echo canceller are developed. The post-processor suppresses late reverberation caused by the desired source, residual echo, and background noise. The late reverberation and late residual echo are estimated using the generalized statistical reverberation model. Experimental results convincingly demonstrate the benefits of the proposed system for suppressing late reverberation, residual echo and background noise. The proposed structure and post-processor have a low computational complexity, a highly modular structure, can be seamlessly integrated into existing hands-free communication systems, and affords a significant increase of the listening comfort and speech intelligibility

    Speech Dereverberation Based on Multi-Channel Linear Prediction

    Get PDF
    Room reverberation can severely degrade the auditory quality and intelligibility of the speech signals received by distant microphones in an enclosed environment. In recent years, various dereverberation algorithms have been developed to tackle this problem, such as beamforming and inverse filtering of the room transfer function. However, this kind of methods relies heavily on the precise estimation of either the direction of arrival (DOA) or room acoustic characteristics. Thus, their performance is very much limited. A more promising category of dereverberation algorithms has been developed based on multi-channel linear predictor (MCLP). This idea was first proposed in time domain where speech signal is highly correlated in a short period of time. To ensure a good suppression of the reverberation, the prediction filter length is required to be longer than the reverberation time. As a result, the complexity of this algorithm is often unacceptable because of large covariance matrix calculation. To overcome this disadvantage, this thesis focuses on the MCLP dereverberation methods performed in the short-time Fourier transform (STFT) domain. Recently, the weighted prediction error (WPE) algorithm has been developed and widely applied to speech dereverberation. In WPE algorithm, MCLP is used in the STFT domain to estimate the late reverberation components from previous frames of the reverberant speech. The enhanced speech is obtained by subtracting the late reverberation from the reverberant speech. Each STFT coefficient is assumed to be independent and obeys Gaussian distribution. A maximum likelihood (ML) problem is formulated in each frequency bin to calculate the predictor coefficients. In this thesis, the original WPE algorithm is improved in two aspects. First, two advanced statistical models, generalized Gaussian distribution (GGD) and Laplacian distribution, are employed instead of the classic Gaussian distribution. Both of them are shown to give better modeling of the histogram of the clean speech. Second, we focus on improving the estimation of the variances of the STFT coefficients of the desired signal. In the original WPE algorithm, the variances are estimated in each frequency bin independently without considering the cross-frequency correlation. Thus, we integrate the nonnegative matrix factorization (NMF) into the WPE algorithm to refine the estimation of the variances and hence obtain a better dereverberation performance. Another category of MCLP based dereverberation algorithm has been proposed in literature by exploiting the sparsity of the STFT coefficients of the desired signal for calculating the predictor coefficients. In this thesis, we also investigate an efficient algorithm based on the maximization of the group sparsity of desired signal using mixed norms. Inspired by the idea of sparse linear predictor (SLP), we propose to include a sparse constraint for the predictor coefficients in order to further improve the dereverberation performance. A weighting parameter is also introduced to achieve a trade-off between the sparsity of the desired signal and the predictor coefficients. Computer simulation of the proposed dereverberation algorithms is conducted. Our experimental results show that the proposed algorithms can significantly improve the quality of reverberant speech signal under different reverberation times. Subjective evaluation also gives a more intuitive demonstration of the enhanced speech intelligibility. Performance comparison also shows that our algorithms outperform some of the state-of-the-art dereverberation techniques

    Comparison of single channel blind dereverberation methods for speech signals

    Get PDF
    Reverberation is an effect caused by echoes from objects when an audio wave travels from an audio source to a listener. This channel effect can be modeled by a finite impulse response lter which is called a room impulse response (RIR) in case of speech recordings in a room. Reverberation especially with a long filter causes high degradation in recorded speech signals and may affect applications such as Automatic Speech Recognition (ASR), hands-free teleconferencing and many others significantly. It may even cause ASR performance to decrease even in a system trained using a database with reverberated speech. If the reverberation environment is known, the echoes can be removed using simple methods. However, in most of the cases, it is unknown and the process needs to be done blind, without knowing the reverberation environment. In the literature, this problem is called the blind dereverberation problem. Although, there are several methods proposed to solve the blind dereverberation problem, due to the difficulty caused by not knowing the signal and the filter, the echoes are hard to remove completely from speech signals. This thesis aims to compare some of these existing methods such as Laplacian based weighted prediction error (L-WPE), Gaussian weighted prediction error (G-WPE), NMF based temporal spectral modeling (NMF+N-CTF), delayed linear prediction (DLP) and proposes a new method that we call sparsity penalized weighted least squares (SPWLS). In our experiments, we obtained the best results with L-WPE followed by G-WPE methods, whereas the new SPWLS method initialized with G-WPE method obtained slightly better signal-to-noise ratio and perceptual quality values when the room impulse responses are long
    corecore