301 research outputs found

    A Proof-Theoretic Approach to Scope Ambiguity in Compositional Vector Space Models

    Full text link
    We investigate the extent to which compositional vector space models can be used to account for scope ambiguity in quantified sentences (of the form "Every man loves some woman"). Such sentences containing two quantifiers introduce two readings, a direct scope reading and an inverse scope reading. This ambiguity has been treated in a vector space model using bialgebras by (Hedges and Sadrzadeh, 2016) and (Sadrzadeh, 2016), though without an explanation of the mechanism by which the ambiguity arises. We combine a polarised focussed sequent calculus for the non-associative Lambek calculus NL, as described in (Moortgat and Moot, 2011), with the vector based approach to quantifier scope ambiguity. In particular, we establish a procedure for obtaining a vector space model for quantifier scope ambiguity in a derivational way.Comment: This is a preprint of a paper to appear in: Journal of Language Modelling, 201

    Vector spaces as Kripke frames

    Get PDF
    In recent years, the compositional distributional approach in computational linguistics has opened the way for an integration of the \emph{lexical} aspects of meaning into Lambek's type-logical grammar program. This approach is based on the observation that a sound semantics for the associative, commutative and unital Lambek calculus can be based on vector spaces by interpreting fusion as the tensor product of vector spaces. In this paper, we build on this observation and extend it to a `vector space semantics' for the \emph{general} Lambek calculus, based on \emph{algebras over a field} K\mathbb{K} (or K\mathbb{K}-algebras), i.e. vector spaces endowed with a bilinear binary product. Such structures are well known in algebraic geometry and algebraic topology, since they are important instances of Lie algebras and Hopf algebras. Applying results and insights from duality and representation theory for the algebraic semantics of nonclassical logics, we regard K\mathbb{K}-algebras as `Kripke frames' the complex algebras of which are complete residuated lattices. This perspective makes it possible to establish a systematic connection between vector space semantics and the standard Routley-Meyer semantics of (modal) substructural logics

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure
    • …
    corecore