
Parsing

with

Structure-Preserving

Categorial Grammars

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301638162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Published by
LOT Phone: +31 30 253 6006
Janskerkhof 13 Fax: +31 30 253 6406
3512 BL Utrecht e-mail: lot@let.uu.nl
The Netherlands http://www.lotschool.nl/

Cover illustration: Melancholia I, A. Dürer 1514, detail.

ISBN 978-90-78328-33-9
NUR 616

Copyright c© 2007: Matteo Capelletti. All rights reserved.

This dissertation is typeset using LATEX.

Parsing with Structure-Preserving Categorial
Grammars

Zinsontleding met Structuurbehoudende Categoriale
Grammatica’s

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit Utrecht

op gezag van de rector magnificus, prof. dr. W. H. Gispen,
ingevolge het besluit van het college voor promoties

in het openbaar te verdedigen
op 9 juli 2007

des middags te 4.15 uur

door

Matteo Capelletti

geboren op 4 januari 1977 te Cesena, Italië

Promotores: Prof.dr. M.J. Moortgat
Prof.dr. D.J.N. van Eijck

To my sister Beatrice.

2

Acknowledgments

Exactly four years ago, I came to the Netherlands “to study categorial
grammar with Professor Moortgat”. During this time the expectations of

those first days have never been disappointed nor has the excitement decreased.
I had the chance to study most interesting topics in a very pleasant environment
and with greatly talented people. I wish here to express my gratitude for the
opportunity that I have been given.

First of all, I wish to thank warmly my supervisors Michael Moortgat and
Jan van Eijck for their help and guidance. Michael followed my studies with
great care, trust and enthusiasm since the beginning. Jan guided me through
the study of functional programming, logic and parsing, with kindness and
patience. It was a privilege and a great pleasure to work with them.

Secondly, I wish to thank the members of the thesis committee, Maciej
Kandulski, Mati Pentus, Christian Retoré, Doaitse Swierstra and Albert Visser
for taking the time to read this dissertation with care.

Special thanks go to Gianluca Giorgolo, for a careful reading of the manu-
script and for helpful comments and discussions; to Richard Moot for sug-
gestions and clarifications on several points, and to Øystein Nilsen for many
precious hints and advice.

I also owe much to Raffaella Bernardi and Claudia Casadio who encouraged
and helped me to come to Utrecht; to Herman Hendriks who taught fascinating
courses on Montague grammar, and to Willemijn Vermaat, my colleague at
OTS working on type-logical grammar.

I also wish to thank the various office mates across the years for creat-
ing a pleasant and stimulating working environment: Bert Le Bruyn, Michiel
Hildebrand, Heleen Hoekstra, Olga Khomitsevich, Marjo van Koppen, Øystein
Nilsen and Yoad Winter.

During these years, I have spent some fruitful research periods in Bor-
deaux. Thereby I wish to thank the members of the team Signes: Maxime
Amblard, Roberto Bonato, Alain Lecomte, Yannick Le Nir, Renaud Marlet,
Richard Moot, Christian Retoré and the rest of the team for receiving me and
exchanging valuable ideas.

Also many other people have helped me with my work, sometimes by mak-
ing useful remarks and criticisms, sometimes just by showing interest in my

ii

ideas and encouraging me. My thanks go to Wojciech Buszkowski Philippe
de Groote, Henriette de Swart, Maurizio Ferriani, Nissim Francez, Maciej
Kandulski, Joachim Lambek, Glyn Morrill, Reinhard Muskens, Dick Oehrle,
Aarne Ranta, Greg Restall, Giorgio Sandri, Ed Stabler, Mark Steedman, Lutz
Straßburger and Walter Tega.

I also wish to thank the following friends and colleagues: Anna Asbury,
Fabian Battaglini, Natalie Boll, Ivana Brasileiro, Christophe Costa-Florencio,
Joke Delange, Alexis Dimitriadis, Jakub Dotlacil, Paola Escudero, Martin Ev-
eraert, Mario Fadda, Berit Gehrke, Nicole Gregoire, Nino Grillo, Christina
Hunger, Judith Kamalski, Annemarie Kerkhoff, Cem Keskin, Esther Kraak,
Huib Kranendonk, Shakuntala Mahanta, Marijana Marelj, Anna Mlynarczyk,
Paola Monachesi, Iris Mulders, Rick Nouwen, Christina Paoletti, Dimitra Pa-
pangeli, György Rákosi, Marco Prandoni, Oren Sadeh-Leicht, Kakhi Sakhltkhut-
sishvili, Maaike Schoorlemmer, Anca Sevcenco, Natalia Slioussar, Giorgos Spa-
thas, Fabio Tamburini, Roberta Tedeschi, Sharon Unsworth, Daphne van Wei-
jen, Mario van der Visser, Nada Vasic, Nina Versteeg, Nadja Vinokurova and
Evangelia Vlachou.

I thank Jet and Rien for their hospitality and generosity, and for making
me feel at home.

My parents Gabriele and Francesca I wish to thank for being close to me
even from far away. To Stefano Pasini I am grateful for his always encouraging
words. To the rest of my family in Italy, nonni, nonne, zii, cugine, and other
relatives and friends I owe a great deal for surrounding me with laughter, care
and food every time I go back home.

I thank Saara for her constant presence even from afar, for her support and
encouragement.

This book is dedicated to my beloved sister Beatrice (1980-2005) who always
believed in me.

Contents

1 Introduction 1
1.1 Overview . 3

2 Background 5
2.1 Languages . 5
2.2 Grammars . 7
2.3 Context-free grammars . 10
2.4 Categorial grammars . 14

2.4.1 AB grammars . 14
2.4.2 Lambek style categorial grammars 18
2.4.3 Product categories . 20

2.5 Lambda terms . 24
2.6 Typed lambda calculus . 25
2.7 Extended categorial grammars 28
2.8 Multi-modal type-logical grammars 34
2.9 Generative power of categorial grammars 38
2.10 Conclusion . 40

I Automated Reasoning 41

3 Deductive Parsers 43
3.1 Problems . 44
3.2 Deductive parsers . 47
3.3 Bottom-up parsers . 48

3.3.1 AB grammars . 49
3.3.2 Product rules . 50

3.4 Earley style parsing . 55
3.4.1 Earley system for CF . 56
3.4.2 The Earley parser for AB⊗ grammars 58

3.5 Mixed regime . 66
3.6 Approaching Lambek systems 73
3.7 Conclusion . 76

iv

4 Implementations 77
4.1 Agenda-driven chart-based procedure 77
4.2 Tabular parsing . 80
4.3 Tabular CYK algorithm . 81
4.4 The Earley algorithm . 86

4.4.1 The Earley algorithm for CF grammars 87
4.4.2 The Early algorithm for AB

⊗
. 89

4.5 Conclusion . 90

II The Non-associative Lambek Calculus 93

5 Normal Derivations in NL 95
5.1 Alternative formulations of NL 97
5.2 Normal derivations . 99
5.3 Automatic recognition . 102

5.3.1 Expansion and reduction 103
5.3.2 Remarks on expansion and reduction 111
5.3.3 Extensions . 112
5.3.4 The underlying deductive system 113

5.4 Connection to parsing . 114
5.5 Conclusion . 115

6 Normal Derivations and Ambiguity 117
6.1 Eliminating redundancies . 118
6.2 Enumerating readings . 125
6.3 Conclusion . 131

7 Complexity 133
7.1 Charted expansion/reduction algorithm 134
7.2 A calculus for the subformula property 136
7.3 NL in polynomial time . 140
7.4 Connection to parsing . 146
7.5 Conclusion . 149

8 Conclusion and Further Lines of Research 153

Bibliography 155

Index 162

Chapter 1

Introduction

The term categorial grammar includes various linguistic formalisms which
share the assumption that expressions may belong to either complete or

incomplete syntactic categories. Such theoretical assumption is reflected in the
functional notation adopted for encoding categories. Apart from this common
feature, the methods and the tools of the various frameworks may be substan-
tially different both for theoretical and computational properties.

On one side, the so called combinatory categorial grammars of Steedman
[2000b] are rooted in the combinatorial tradition of Ajdukiewicz [1935] and Bar-
Hillel [1953]. These systems adopt a small set of schematic composition rules,
called combinators, encoding different forms of functor-argument application.

On the other, there are the logical grammars of Morrill [1994] and Moortgat
[1997] among others, stemming from the work of Lambek [1958, 1961]. These
systems interpret the language generation process as a full-fledged logical de-
duction.

The rules of combinatory categorial grammar, CCG for short, only compose
simpler structures into larger ones1, according to generalized oriented variants
of the rule of modus ponens:

g : p f : p ⇒ q

(f g) : q

Type-logical grammars (TLG) have, together with the composition rules,
rules that decompose complex structures into simpler ones: variants of the
introduction rule for the implication:

[x : p]....
g : q

λx.g : p ⇒ q

1We are in fact oversimplifying, since also CCG has forms of type raising rules. We will
largely discuss this kind of rules in the third part of this book.

2

This difference has rather drastic consequences for the theoretical and com-
putational properties of the two systems.

With regard to the theoretical foundation of the grammar system, Lambek
style categorial grammars are grammars based on logical systems which can be
proved to be complete with respect to the appropriate models, as shown in [Kur-
tonina, 1995], [Kurtonina and Moortgat, 1997], [Pentus, 1995] and [Buszkowski,
1997].

As for the computational properties, the rule based CCG framework can
easily make use of the efficient parsing methods which have been developed
for context-free grammars, as shown, for instance, in [Vijay-Shanker and Weir,
1990]. Instead, for TLG even the task of recognizing a sequent whose structure
is given, a task which has hardly any sense for context-free or combinatory
categorial grammar, can be computationally costly. In fact, even a sequent
consisting of two formulas (the antecedent and the succedent) may have a
number of non-equivalent proofs which is exponential on its length. Thus the
size of the search space in automatic recognition may easily grow beyond a
tractable size.

In addition to functors, the structure of syntactic categories can be extended
to include complex categories which result from ‘merging’ simpler categories
without function-argument application. Thus, for instance, we may say that
if the expression w1 is of category a and the expression w2 is of category b,
then the expression w1w2 is of category a ⊗ b. Such product categories can
be a valuable tool for enforcing specific constituent structures and therefore
for the structural adequacy of the linguistic description. On the other hand,
an expression w0 . . .wn, such that each wi is assigned the category ai, can be
assigned Cn product categories, where Cn is the Catalan number of n. Such
combinatorial explosion is a problem that may affect both CCG2 and TLG with
product.

In this book, I will give a solution to these computational problems for the
most basic kind of categorial logic: the pure logic of residuation, also known
as non-associative Lambek calculus, since it was formulated for the first time
by Lambek [1961]. From the type-logical perspective, any other logic can be
obtained from the pure logic of residuation by addition of structural rules,
that is to say, rules which change the structure of the categories. Hence the
expression structure-preserving in the title of this book.

The main results contained in this book are the followings:

1. A function calculating the number of possible readings of a sequent on
the basis of its length.

2. An efficient method for handling product categories in the parsing pro-
cess.

2Although CCG are customarily presented as product-free system, the extension to the
product would be rather natural.

Introduction 3

3. A redundancy-free proof construction method.

4. A redundancy-free polynomial chart-parser for grammars based on the
non-associative Lambek calculus.

1.1 Overview

This book is organized as follows.
In Chapter 2, I introduce the formalisms of categorial grammar and of

context-free grammar, and most of the basic notions that will be used through-
out the book.

In Chapter 3, I define parsers for context-free and Ajdukiewicz–Bar-Hillel
categorial grammars with product. Parsers are formulated here as deductive
systems in the style of the deductive parsers of [Shieber et al., 1995] and [Sikkel,
1993]. The implementation and complexity of these parsing systems are studied
in Chapter 4.

Chapter 5 presents a simple method for constructing normal derivations in
the non-associative Lambek calculus. Normal, here, means almost the same as
in [Buszkowski, 1986] and [Kandulski, 1988]: a proof of a sequent a → c consists
in a series of reducing-complexity transitions followed by a series of expanding-
complexity transitions. However, it is not exactly the same. In the sense of
these authors, normal does not imply uniqueness. We will see in Chapter 6
that there can be several equivalent normal derivations, in Buszkowski and
Kandulski’s sense. Instead, the procedure that I formulate in Definition 5.9, in
Chapter 5, generates only non-equivalent derivations as I prove in Chapter 6.

The topic of Chapter 6 is that of ambiguity, both spurious and non. I
address also the question of the number of readings of a sequent in the non-
associative Lambek calculus. In this respect, I establish the connection between
the number of readings of a sequent and the binomial coefficient in Section 6.2.

Chapter 7 is concerned with the complexity of the non-associative Lambek
calculus. It is well know, from [de Groote, 1999] and [Buszkowski, 2005], that
this system can be parsed in polynomial time. My contribution is a detailed
description of a polynomial recognition procedure which satisfies some of the
desiderata of [de Groote, 1999]. Besides I lower the previous polynomial bounds
by adopting a stronger notion of subformula.

Chapter 2

Background

In this chapter, I introduce the basic notions of formal language theory that
will accompany us throughout the book. Context-free grammars and cate-

gorial grammars are formulated as deductive systems, following the parsing-as-
deduction methodology of [Pereira and Warren, 1983]. I will present associa-
tive and non-associative Ajdukiewicz–Bar-Hillel grammars, the associative and
non-associative Lambek calculus and the framework of multi-modal type-logical
grammars.

2.1 Languages

Languages are defined from their terminal elements, often called words or more
in general symbols.

Definition 2.1. A vocabulary (or alphabet) is a finite non-empty set of symbols.

If the symbols in the vocabulary are of type a, we write the type of the
vocabulary as {a}. Let us give some example of vocabularies.

Example 2.1. Vocabularies:

- V0 = {0, 1}, where 0, 1 are of type Int(eger).

- V1 = {a,b, c}, where a,b, c are of type Char(acter).

- V2 = { John,Mary, every, a,man,woman, loves, ismissing },
where each element of V2 is a list of characters.

We saw that in the vocabulary V2, symbols are structured objects: lists of
objects of type Char. Let us introduce precisely the notion of list.

Definition 2.2. A list of objects of type a, denoted List a, is defined as

List a := ε | H a (List a)

6 2.1. Languages

This definition states that a list of objects of type a is either ε (the empty
list) or the result of the application of the constructor H to an object of type
a and to an object of type List a (a list of objects of type a). Following the
Haskell syntax, [Jones, 2003], instead of List a, we use the notation [a] and
instead of the constructor H we use the colon : infix notation. The elements of
a list are separated by commas. Again, according to the Haskell conventions,
a prefix function f can be made infix by writing `f`. While an infix function
g is made prefix by writing (g). Thus, H = (:) and : = `H`. The type of this
function is written (:) :: a → [a] → [a], which means that (:) is a function
that takes in input an argument x of type a, and returns a function that takes
in input a list [x1, . . . , xn] of objects of type a and returns as output a list
[x, x1, . . . , xn] of objects of type a. Thus, for example, we have the following
equivalences.

[] = ε

a :as = H aas

[a,b, c] = a : b : c : [] = H a (H b (H c ε))

As usual, we use for the wildcard. We define the length of a list xs, denoted
|xs|:

|[]| = 0
|(:as)| = 1 + |as|

Definition 2.3. The concatenation, (++) :: [a] → [a] → [a], of two lists xs and
ys is defined as follows.

[] ++ys = ys

(x :xs) ++ ys = x : (xs ++ys)

List concatenation has the following properties.

- [] ++ys = ys = ys ++ []

- (xs ++ys) ++ zs = xs ++ (ys ++ zs)

Definition 2.4.

The Kleene closure of a set A of type {a}, denoted A∗ and of type {[a]}, is the
set of all lists over A.

The positive Kleene closure of a set A of type {a}, denoted A+ and of type {[a]},
is the set of all non-empty lists over A.

A language over a vocabulary V is a subset of V∗

Example 2.2. Languages:

- V∗
0 = {[], [0], [1], [0, 1], [0, 0], [1, 1], [0, 0, 0], . . .},

- V+
0 = {[0], [1], [0, 1], [0, 0], [1, 1], [0, 0, 0], . . .},

Background 7

- L1 = {[0], [1], [0, 1, 1, 1]} is a (finite) language over V0.

By string, we mean a list of symbols of some type. In order to simplify
the notation, we write a list of Char type objects, [a,b, c], as abc and the
concatenation of two lists abc and de simply as abcde. This convention is
extended to all the lists of unstructured symbols, like Char. When the objects
are more structured, we can use white-spaces to separate the various tokens.
For example, the list of integers [1, 100, 3] is written 1 100 3 and a list of lists
of characters [John,walks] as John walks. We will use this simplified notation
as far as it does not result ambiguous. We extend the notion of concatenation
to sets of lists of objects.

Definition 2.5. If L1 and L2 are two languages of type {[a]}, we write L1L2

the language consisting of all the strings xy such that x ∈ L1 and y ∈ L2.

(++) :: {[a]} → {[a]} → {[a]}

L1++L2 = {x ++y | x ∈ L1, y ∈ L2}

2.2 Grammars

According to Chomsky [1957, 1959], a grammar is a formal device that char-
acterizes a language. This means that given a string in input, the grammar
determines, in a finite number of steps, whether the string is in the language
or not. A grammar can be seen as a kind of deductive system, subject to spe-
cific constraints. I will define deductive systems below. Then, we will examine
context-free grammars and categorial grammars as instances of deductive sys-
tems.

Deductive systems

We start this section by introducing syntactic categories.

Definition 2.6. Syntactic categories.

Let a set of atoms, A be defined as

A := S | NP | VP | N | . . . | a1 | a2 | . . .

Furthermore, let
F := A

Later we will extend the data type F of formulas with other type construc-
tors for categorial formulas. Formulas, or categories, are the basic objects that
the deductive systems that we are going to define will manipulate. We denote
Γ [∆] an element of F∗ with a distinguished occurrence of ∆ ∈ F∗. The result
of replacing ∆ for Λ in Γ [Λ] is Γ [∆].

8 2.2. Grammars

Definition 2.7. A deductive system D is a triple 〈F,AX,R〉, where

- AX is a set of pairs 〈Γ ,∆〉 such that Γ ∈ F∗ and ∆ ∈ F∗, the set of axioms.
We write each 〈Γ ,∆〉 ∈ AX as Γ → ∆.

- R is the set of the inference rules proper to the system. Such rules are
conditionals of the form

if Γ0 → ∆0 and . . . and Γn → ∆n

then Γ → ∆

We write rules as
Γ0 → ∆0 . . . Γn → ∆n

Γ → ∆

The objects of the form Γ → ∆ are called sequents. In a sequent Γ → ∆,
Γ is called the antecedent and ∆ the succedent. The Γ0 → ∆0 . . . Γn → ∆n in
the “if” part of the rules are called premises, and Γ → ∆ in the “then” part is
called conclusion. We remark that what appears in the rules are variables over
sequents.

Definition 2.8. A tree of objects of type a, denoted Tree a, is defined as
follows1

Tree a := Branch a [Tree a]

This definition states that a tree of objects of type a consists of a Branch

constructor followed by an a type object, the root, and by a list of trees of type
a, the brances of the tree. For simplicity, we write Leaf a for Branch a []. We
show a tree of the form Leaf x as x and a tree of the form Branch r [t0, t1, . . . ,
tn] as

t0 t1 . . . tn

r

However, we will usually work with unary and binary trees.

Definition 2.9. Let a deductive system D = 〈F,AX,R〉 be given. We recur-
sively define a deduction in D as a tree of sequents such that:

1. Leaf a is a deduction, if a ∈ AX.

2. Branch r [t0, t1, . . . , tn] is a deduction, if t0, t1, . . . , tn are deductions,
and r is the conclusion of an inference rule in R with the conclusions of
t0, t1, . . . , tn (in the order) as premises.

We introduce also the notions of generation and of language generated by
a deductive system.

1Such representation of a tree is also called a rose.

Background 9

Definition 2.10.

A deductive system D generates a sequent Γ → ∆, denoted `D Γ → ∆, if Γ → ∆

is the root of a deduction in D.
The language generated by a deductive system D, denoted L(D) is the set of
sequents generated by D.

In the context of phrase structure grammars, the notion of derivation is
used more often than the one of deduction. Let us introduce also the following
definitions.

Definition 2.11.

A rewriting system R is a pair 〈F,AX〉 such that AX is as in Definition 2.7.
The one step derivation ⇒ is defined as follows:

Γ [Λ] ⇒ Γ [∆] if Λ → ∆ ∈ AX.

A derivation is the reflexive transitive closure of ⇒, denoted ⇒∗ and defined
as follows:

Γn ⇒∗ Γ0 if and only if either Γ0 ≡ Γn or Γn ⇒∗ Γ1 ⇒ Γ0.

R generates the pair 〈Γ ,∆〉, notation `R Γ → ∆ if and only if Γ ⇒∗ ∆.

An immediate consequence of Definition 2.11 is the following.

Proposition 2.1. Let R be a rewriting system. Then

if Λ ⇒∗ ∆ and Γ [∆] ⇒∗ Σ, then Γ [Λ] ⇒∗ Σ

Proof.
If Λ ≡ ∆, then it holds trivially.
If Λ ⇒ ∆ ≡ ∆ ′[Ω ′] ⇒ ∆ ′[Ω] and Ω ′ → Ω ∈ AX, then Γ [∆] ⇒∗ Σ ≡
Γ [∆ ′[Ω]] ⇒∗ Σ. Hence Γ [∆ ′[Ω ′]] ⇒∗ Σ ≡ Γ [Λ] ⇒∗ Σ.
If Λn ⇒∗ Λ1 ⇒ ∆, and Γ [∆] ⇒∗ Σ, then Γ [Λ1] ⇒ Γ [∆] ⇒∗ Σ.

We make now clear the link between a rewriting system and a deductive
system.

Proposition 2.2. Let R = 〈F,AX〉 be a rewriting system and D = 〈F,AX,
{Cut}〉 a deductive system such that Cut is the following rule

Λ → ∆ Γ [∆] → Σ

Γ [Λ] → Σ

Then
`R Γ → ∆ iff `D Γ → ∆

Proof. Clearly, Cut is the same inference rule as the one in Proposition 2.1.

The rule used in Proposition 2.2, is an unrestricted version of the deductive
rule of cut. In what follows, we will assume that the succedent of every sequent
will be a single formula.

10 2.3. Context-free grammars

2.3 Context-free grammars

The context-free grammar formalism is important under several respects. In
the first place, it is simple and easy to use for designing grammars. Context-free
grammars are theoretically well understood and have pleasant computational
properties as we will see in Chapters 3 and 4. Secondly, every natural language
is to a large extent (though not entirely) context-free (CF for short), in the
sense that it can be analyzed with the formalism of CF grammars. These
aspects made these systems the first candidate for natural language analysis
and a standard for evaluating the properties of other frameworks.

Definition 2.12. A context-free grammar G is a quadruple 〈Vt,S,Lex,D〉
where

- D = 〈F,AX,R〉 is a deductive system2,

- F∗×F ⊆ AX are the productions of the grammar, which we write Γ → A,
with Γ ∈ F∗and A ∈ F

- R consists of the Cut rule:

∆ → B Γ [B] → C

Γ [∆] → C

- S is a distinguished formula, the start symbol,

- Vt is the terminal vocabulary. We assume that Vt ∩ F = ∅,

- Lex = { w → A | w ∈ (Vt ∪ {ε}), A ∈ F }.

Remark 2.1.

The cut rule has a global status. This means that the elements of Lex can be
plugged into the leaves of the deduction of D, see Definition 2.20 on page 16.

Although in the previous definition, we distinguished between lexical axioms
in Lex and axioms of the deductive system in AX, these two sets are usually
merged by adopting a set of axioms, called productions, of the form

Γ → A, with Γ ∈ (F ∪ Vt)
∗ and A ∈ F.

Thus for simplicity, from now on we will write a CF grammar as quadruple
〈Vt,S,F,P〉, where P ⊆ (F ∪ Vt)

∗ × F is the set of the productions of the
grammar.

Moreover, we are writing as Γ → A, what is usually written A → Γ in the
literature on phrase structure grammars. We preferred this notation because
it allows a more uniform treatment of categorial and context-free grammars.

2Equivalently, one may adopt a rewriting system in place of a deductive system.

Background 11

In the following examples of CF grammars, we write only the set of pro-
ductions P. Moreover, whenever several rewriting options Γ0 → A, . . . , Γn → A

appear in P, we write them as Γ0 | . . . | Γn → A as it is customary.

Example 2.3. CF grammars:

- G0 = { 0S1 | ε → S }.

- G1 = { (S)S | ε → S }.

- G2 = { 1S | 0 → S }.

- G3 =

{ NP VP → S,

Np | Det N → NP,

IV | TV NP → VP,

whistles → IV,

loves → TV,

John | Mary → Np,

every | a → Det,

man | woman → N }.

We write `G Γ → A, if the grammar G generates the sequent Γ → A. We
introduce some further notions below.

Definition 2.13.

The terminal language generated by a context-free grammar G, denoted Lt(G),
is the set of the Γ ∈ V∗

t such that `G Γ → S.

A grammar G1 is equivalent to a grammar G2 if and only if Lt(G1) = Lt(G2).

From the derivational perspective, we take the terminal language generated
to be the set

{ Γ ∈ V∗
t | Γ ⇒∗ S }

the grammar being understood.

Example 2.4. Terminal languages:

- Lt(G0) = {0n1n | 0 6 n}.

- Lt(G1), is the language of strings of balanced brackets.

- Lt(G2) = {1n0 | 0 6 n}.

- Lt(G3) is the language of well-formed English sentences over the termi-
nal vocabulary of G3 which contains only the words appearing in the
productions.

12 2.3. Context-free grammars

Let us give a deduction of the string (())() in grammar G1.

Example 2.5. A deduction of the terminal string (())() in G1.

ε → S

ε → S (S)S → S

()S → S

() → S

ε → S

ε → S (S)S → S

()S → S

() → S (S)S → S

(())S → S

(())() → S

Observe that several other deductions are available for the same terminal
string. However, all of them are in a sense equivalent. To clearify in what
sense, we can make use of the notion of structural description. A structural
description is a tree whose internal nodes are labeled by non-terminals of the
grammar and whose leaves are labeled by terminals. Such a tree indicates:

1. the hierarchical grouping of the parts of the expression into constituents,

2. the grammatical category of each constituent and

3. the left-to-right order of the constituents.

Let us define here a recursive procedure for mapping a deduction into a struc-
tural description.

Definition 2.14. Let a CF grammar G = 〈Vt,S,F,P〉 be given. Let `G Γ → C.
We build a structural description T for Γ → C in G as follows. Assume that
the γ’s and δ’s are elements of Vt ∪ F.

If Γ → C ≡ δ1 . . . δm → C ∈ P, then T is the tree

δ1 . . . δm

C

Otherwise, Γ → C ≡ γ1 . . .γiδ1 . . . δmγi+1 . . .γn → C and the last step of a
deduction of Γ → C in G is

δ1 . . . δm → B γ1 . . .γiBγi+1 . . .γn → C

γ1 . . .γiδ1 . . . δmγi+1 . . .γn → C

Assume that the tree
δ1 . . . δm

B

is assigned to the deduction of δ1 . . . δm → B and that the tree

γ1 . . . γi B γi+1 . . . γn

C

Background 13

is assigned to the deduction of γ1 . . .γiBγi+1 . . .γn → C. Then, T is the tree

γ1 . . . γi

δ1 . . . δm

B γi+1 . . . γn

C

One can easily see that all the alternative deductions of the string (())() in
grammar G1 are mapped to the same structural description. Hence they are
equivalent.

In fact, the notion of deduction, as well as that of derivation, is affected
by spurious ambiguity. In the context of CF grammars, this means that sev-
eral deductions may correspond to the same structural description. Clearly, in
a computation, we want to avoid such proliferation of equivalent deductions.
However, there may also be cases of ‘genuine’ ambiguity, that is, different
deductions of the same sequent that correspond to different structural descrip-
tions, and we want to keep these, because, for example, they express different
meanings of a sequent. Take for instance the following grammar:

S ∧ S → S

¬S → S

pi → S, i 6 0

In this grammar, the expression ¬p1∧p2 can be derived in different ways which
are not all equivalent since they map to two different structural descriptions.

In Chapter 3, we will see that there are elegant and powerful methods to
solve these problems for CF grammars. We will also see in Chapter 6 that the
notion of spurious ambiguity has a more subtle character in the case of Lambek
style categorial grammars and that its elimination requires more ingenuity.

A class of context-free grammars has particularly nice computational prop-
erties.

Definition 2.15. A grammar G is in Chomsky normal form (CNF), if it con-
tains only productions of the form:

A B → C, A 6= S, B 6= S,

w → A, w ∈ Vt or

ε → S.

Chomsky [1959] proves that for every context-free grammars G there is a
CNF grammar G ′ such that Lt(G) = Lt(G

′). Observe that, for grammars in
CNF, it makes sense to maintain the partition of the axioms into lexical axioms,
namely productions of the form w → A, and non-lexical axioms, namely pro-
ductions of the form A B → C. Thus, we will write a Chomsky normal form CF

grammar as 〈Vt,S,F,Lex,AX〉. All productions of CNF grammars are binary,
and we will see in Chapters 3 and 4 that this allows to parse them with a very
simple and elegant parsing algorithm known as the CYK algorithm. The fact

14 2.4. Categorial grammars

that all CF grammars can be put in CNF also makes the CYK algorithm a gen-
eral parsing algorithm for CF languages. However, we should remark also that
the CNF variant of a CF grammar may generate a different structural language
from the one of the original grammar.

2.4 Categorial grammars

The first formulation of linguistic categories as basic and functor categories
appeared long before the advent of generative grammar. Ajdukiewicz [1935] was
the first to apply the distinction between complete and incomplete expressions
to the analysis of natural language. He was formalizing and applying to natural
and artificial languages concepts from Leśniewski’s mereology and Husserl’s
notion of semantic category, with mathematical tools coming from Russel’s
theory of types and of Frege’s functional notation. A functor category was
presented as an object of the form

a

b

where a and b are also categories. The intuition behind such a notation is that
of a function from an object of type b, the input (or argument or denominator),
to an object of type a, the output (or value or numerator). In other words, an
expression of category a

b is an incomplete expression, looking for an expression
of category b to give an expression of category a.

2.4.1 AB grammars

Ajdukiewicz’s notation was meant to provide a characterization of semantic
well-formedness. In fact, he was aiming at the formalization of a notion of
semantic category capable of encoding the function-argument structure of some
formal and natural languages3. This notation was refined by Joshua Bar-Hillel,
who distinguished categories of the form a/b and categories of the form b\a

in [Bar-Hillel, 1953]. The meaning of such a notation was the following.

- An expression of category a/b combines with an expression of category
b to its right to give an expression of category a.

- An expression of category b\a combines with an expression of category
b to its left to give an expression of category a.

While this notation for linguistic categories preserves the functor-argument
structure of Ajdukiewicz’s original one, it also enables to distinguish between
left-looking functors and right-looking functors, that is between functors se-
lecting their arguments to the left and functors that select their arguments

3Such project was later developed into what is known as model theoretic semantics. For
instance, [Montague, 1970] adopts a variant of Ajdukiewicz’s notation for defining semantic
well-formedness of natural language expressions.

Background 15

to the right, respectively. Observe also that this definition of linguistic cate-
gory merges the two fundamental domains of syntax and semantics: the way
in which the expressions are composed and the way in which meanings are
composed. We will see in more detail how this correspondence, also known as
compositionality principle, is realized in categorial grammar in Section 2.6.

The calculus resulting by adopting the rules above, which we call cancella-
tion schemes, is nowadays called AB calculus. More formally, we extend the
formula type constructor as follows.

Definition 2.16. Formulas, or categories, are defined from the set of atoms A

as
F := A | F/F | F\F | F ⊗ F

In the context of categorial grammar, CG hereafter, formulas are also called
categories. Formulas of CF grammars are also formulas of categorial grammar.
However, we will distinguish the two systems by writing atoms of CG with
lowercase letters, while the atoms of CF grammar will always begin with capital
letters. In showing complex formulas, we assume that the slashes have higher
precedence over the product. Thus for example we write a⊗b\c for a⊗ (b\c).
Finally, we assume that / is left associative and \ is right associative. So
(a/b)/c may be written as a/b/c, and c\(b\a) as c\b\a.

Definition 2.17.

The length of a formula a, denoted |a|, is the number of its atom occurrences.

The order of a formula a, denoted o(a) is defined as

o(a) = 0, if a is an atom
o(a/b) = max(o(a),o(b) + 1)

o(b\a) = max(o(a),o(b) + 1)

o(b⊗ a) = max(o(a),o(b))

Product formulas, that is formulas of the form a⊗b, appear for the first time
in [Lambek, 1958]. Still nowadays, many categorial linguists work with product-
free systems. In some case, this may be a legitimate limitation. However, if we
aim at the structural adequacy of the syntactic description, product categories
are a valuable tool. We will discuss categorial systems with and without prod-
uct, although one of our contributions is the application of parsing systems as
the CYK or the Earley parser to categorial grammars with product.

Categorial grammars consist of a lexicon and of a deductive system. The
lexicon assigns words in the terminal vocabulary to syntactic categories and the
deductive system specifies the way in which complex expressions are derived
according to the inference rules.

Definition 2.18. A categorial grammar based on a deductive system D is a
quadruple 〈Vt, s,Lex,D〉 where

16 2.4. Categorial grammars

- Vt is the terminal vocabulary of the grammar.

- s is the distinguished start symbol

- Lex, the lexicon, is a set of pairs 〈w, c〉 which we write w → c, the lexical
assignments, with w ∈ (Vt ∪ {ε}) and c ∈ F.

Thus, we can specify different kinds of categorial grammars by just specify-
ing a deductive system D. For instance, the Ajdukiewicz–Bar-Hillel calculus,
AB for short, is defined as follows.

Definition 2.19. The AB deductive system is a triple 〈F,AX,R〉 such that

- F × F ⊆ AX is a set of identity axioms, which we write a → a.

- R consists of the following rules which we call basic cancellation rules.

Γ → a/b ∆ → b

Γ ∆ → a

Γ → b ∆ → b\a

Γ ∆ → a

We call AB grammar a categorial grammar based on the deductive system
AB. As an example, consider the following AB grammar.

Example 2.6.

A0 = 〈{a,b}, s, {a → s/c/s, ε → s, b → c}, AB〉

We still have no link between the terminal language generated by the gram-
mar and the language generated by the categorial deductive system. The fol-
lowing definition provides us with this connection, observe that the lexicon may
contain assignments for the empty string, this is why the input string may be
shorter than the list of categories in the root sequent.

Definition 2.20. A categorial grammar G = 〈Vt, s,Lex,D〉 generates a string
w0 . . .wm ∈ V∗

t if and only if `D a0 . . .an → s, m 6 n and w0 . . .wm ⇒+

a0 . . .an on the basis of the axioms in Lex.

In this definition, we used ⇒+ for the transitive closure of ⇒. As an
example, we prove that grammar A0 generates the language anbn.

Example 2.7. Grammar A0 generates the language anbn.

Suppose that `A0 (s/c/s)n s (c)n → s for n > 0, then

s/c/s → s/c/s (s/c/s)n s (c)n → s

(s/c/s)n+1 s (c)n → s/c c → c

(s/c/s)n+1 s (c)n+1 → s

Then, on the basis of the axioms in Lex,

anbn ⇒+ (s/c/s)n (c)n ⇒ (s/c/s)n s (c)n

Background 17

In the original formulations of AB grammars, a second kind of cancellation
rules was present together with the basic cancellation schemes, see also [Lam-
bek, 1958]. This second kind of rules can be seen as a generalization of the
basic cancellation rules. On the other hand, we prefer to keep distinct the two
systems and discuss them separately.

Definition 2.21. We call AAB (‘associative’ AB calculus) the deductive sys-
tem 〈F,AX,R〉 where F and AX are as in Definition 2.19, and R consists of the
basic cancellation rules of the AB calculus and of the following inference rules,
which we call associative cancellation rules4.

Γ → a/b ∆ → b/c

Γ ∆ → a/c

Γ → c\b ∆ → b\a

Γ ∆ → c\a

An AAB grammar is a categorial grammar that has AAB as deductive
engine. Consider the following associative Ajdukiewicz–Bar-Hillel categorial
grammar. For simplicity, we simply list the lexical assignments.

Example 2.8.

Let A1 be an AAB grammar, with the following lexicon,

John → n

Mary → n

someone → s/(n\s)

everyone → (s/n)\s

everyone → ((n\s)/n)\(n\s)

loves → (n\s)/n

ismissing → n\s

ismissing → (s/(n\s))\s

As formulas may become soon rather long, we introduce the following
macros. In using these macros, we will try to find a compromise between
clarity and shortness.

Definition 2.22. Macros.
iv := n\s

tv := iv/n

We present some deductions in the associative Ajdukiewicz–Bar-Hillel cal-
culus.

4In fact, one can generalize the cancellation rules for the associative setting in the fol-
lowing way. Let 0 6 k (if k ≡ 0, then b/1 . . ./kc ≡ b), then one rule is the following

Γ → a/b ∆ → b/1 . . ./kc

Γ ∆ → a/1 . . ./kc

the other is the symmetric dual.

18 2.4. Categorial grammars

Example 2.9. Deductions of Someone loves everyone in A1.

1.
s/iv → s/iv tv → iv/n

s/iv, tv → s/n (s/n)\s → (s/n)\s

s/iv, tv, (s/n)\s → s

2.

s/iv → s/iv

tv → tv tv\iv → tv\iv

tv, tv\iv → iv

s/iv, tv, tv\iv → s

Deduction 1 relies essentially on the rules of the system AAB. We can ob-
serve that these two deductions are not a case of spurious ambiguity. Indeed
they are different (one could easily map them to two different structural de-
scriptions, one of which is left branching and the other right branching) and
there are several reasons to be interested in both of them. In Section 2.6, we
will introduce one of the most interesting aspects of categorial grammars: the
correspondence between syntax and semantics. We will see that the two de-
ductions in Example 2.9 express different scope relations between the subject
and the object noun phrase5.

2.4.2 Lambek style categorial grammars

The rule component of an (A)AB deductive systems consists of rules for build-
ing larger structures from simpler ones. Thus, for instance, if we have a struc-
ture Γ of category a/b and a structure ∆ of category b, we can build a structure
Γ ∆ of category a. Under this perspective the AB and AAB grammars are not
substantially different from CF grammars where one builds a structure Γ ∆ of
category C from a structure Γ of category A and a structure ∆ of category B,
if the axiom A B → C is among the productions of the grammar.

An important advancement in the field of categorial grammar was repre-
sented by the work of Joachim Lambek. In [Lambek, 1958], new rules were
added to the composition rules of AB. These rules decompose a structured
sequent in a way that can be spelled out as follows.

- if a structure a Γ (that is, a structure with a as the leftmost category) is
of category c, then the structure Γ is of category a\c.

- if a structure Γ a is of category c, then the structure Γ is of category c/a.

5At the syntactic and prosodic levels, the two deductions in Example 2.9 encode different
structural descriptions that can be assigned to the input string. The connection between
categorial deductions and prosodic phrasing, expressed in terms of the branching of structural
descriptions, is being intensively studied in recent years. The works on combinatory categorial
grammar of M. Steedman and his scholars, see for example [Steedman, 2000b,a; Baldridge,
2002], emphasize the connection between the structures arising from (combinatory) categorial
deductions and prosodic phrasing.

Background 19

These rules are called introduction rules of the slashes (in opposition to the
cancellation or elimination rules of the AB calculus) as they introduce a slash
connective in the conclusion, or also rules of proof (in opposition to the rules of
use of the AB system), as they state how to prove formulas with a main slash
connective.

The product-free associative Lambek calculus, L for short, results from the
AB calculus in Definition 2.19 by adding the slash introduction rules.

Definition 2.23. The product-free associative Lambek calculus, L, is a triple
〈F,AX,R〉 where F and AX are as for the categorial grammars that we saw
before and R consists of the following rules:

- Elimination rules:

Γ → c/b ∆ → b

Γ ∆ → c

Γ → a ∆ → a\c

Γ ∆ → c

- Introduction rules, with Γ ∈ F+:

Γ b → c

Γ → c/b

a Γ → c

Γ → a\c

Observe that in the introduction rules of L, Γ is assumed to be non-empty
as in the original formulation of [Lambek, 1958] see also [Retoré, 2005]. We
notice also that while AB was non-associative, L is associative. In fact, the
absence of brackets in the antecedent of the sequents together with the slash
introduction rules amounts to the same as having a fully associative regime.

An actual simplification, with respect to the system presented in [Lambek,
1958] is the absence of product rules, that is of rules dealing with formulas of
the form a⊗ b. These rules will be introduced in the next section.

A product-free Lambek grammar based on L is a categorial grammar based
on L. We show now the system L at work with a simple example.

Example 2.10.

Let A2 be a L grammar whose lexicon consists of the following assignments:

John → n

Mary → n

someone → s/(n\s)

everyone → (s/n)\s

loves → (n\s)/n

book → c

that → (c\c)/(s/n)

ismissing → (s/(n\s))\s

20 2.4. Categorial grammars

We have the following deduction (among others). For reasons of space we
use the macros in Definition 2.22 and we use commas in the antecedents for
readability.

c → c

(c\c)/(s/n) → (c\c)/(s/n)

s/iv → s/iv

iv/n → iv/n n → n

iv/n, n → iv

s/iv, iv/n, n → s

s/iv, iv/n → s/n

(c\c)/(s/n), s/iv, iv/n → c\c

c, (c\c)/(s/n), s/iv, iv/n → c

By means of lexical axioms we have:

book that someone loves ⇒+ c, (c\c)/(s/n), s/iv, iv/n

The following laws can be proved in L.

Example 2.11. Characteristic theorems of L: for all formulas a,b and c,

a → c/(a\c) a → (c/a)\c

(a\b)/c → a\(b/c) a\(b/c) → (a\b)/c

a\b → (c\a)\(c\b) b/a → (b/c)/(a/c)

a\b → (a\c)/(b\c) b/a → (c/b)\(c/a)

Moreover, different kinds of derived inference rules can be adopted, and
could replace those we used in defining L, as it is done in [Lambek, 1958] and
[Zielonka, 1981] among others. As an example, we deduce one of the associative
cancellation schemes of AAB.

Γ → a/b

∆ → b/c c → c

∆ c → b

Γ ∆ c → a

Γ ∆ → a/c

2.4.3 Product categories

In the previous sections, we presented the (A)AB calculus and associative
product-free Lambek calculus. Although they may have product formulas, these
systems have no rules to handle them. However, in the original formulations of
Lambek [1958, 1961], these calculi also included product formulas and rules to
deal with them. (A)AB calculi and CCG, instead, are customarily presented
as product-free systems. The only formulation we know of an AB calculus with
product is the one given in [Kandulski, 1988], whose rules we present below.

Background 21

Definition 2.24. Inference rules of the AB⊗ deductive system:

Γ → a ∆ → b
Γ ∆ → a⊗ b

Γ → a/b ∆ → b

Γ ∆ → a

Γ → b ∆ → b\a

Γ ∆ → a

The system AB⊗ consists of the basic cancellation rules of the system AB

and of the product rule. We will make extensive use the system AB⊗ and of
its variants in Chapters 3 and 4. Indeed, we can see AB⊗ as the link between
the non-associative Lambek calculus which we are going to see and context-free
grammars.

I introduce now the calculus of [Lambek, 1961]: the non-associative Lambek
calculus with product, NL for short. This logic was introduced by Lambek to
handle bracketed strings of formulas, that is to say to generate trees of formulas
rather than lists of formulas6. In fact, a property of grammars based on the
syntactic calculus of [Lambek, 1958] or on its product free variant is structural
completeness: for any string in the language generated by such grammars all
possible tree structures living on this string7 are derivable, see [Buszkowski,
1997]. On the other hand, the assignment of structural descriptions to the
expressions of a language is a primary concern of generative linguistics. In this
respect, NL, equipped with product categories, has all the tools for generating
appropriate structural descriptions for grammatical expressions.

We present the non-associative Lambek calculus.

Definition 2.25. Pure logic of residuation, NL.

- Identities:
Axioms Cut

a → a
a → b b → c

a → c

- Residuation rules:

a⊗ b → c

a → c/b

a → c/b

a⊗ b → c

a⊗ b → c

b → a\c

b → a\c

a⊗ b → c

6Following [Buszkowski, 1997], we are assuming that the tree generated is the antecedent
of the root of a deduction. However, we observe that [Tiede, 1998] claims that the tree struc-
tures generated by deductions in the (non-associative) Lambek calculus are the deductions
themselves.

7For a bracketed string Γ to live on a string a0 . . .an means that a0 . . .an is the result
of eliminating all brackets from Γ .

22 2.4. Categorial grammars

Again a NL grammar is a categorial grammar based on NL. Let us define
the notion of generation for such systems.

Definition 2.26. A NL grammar G generates a string w0 . . .wm ∈ V∗
t if and

only if NL generates c → s, and

1. for some n > m, a0 . . .an ⇒∗ c by application of transitions of the form

a b → a⊗ b

2. w0 . . .wm ⇒+ a0 . . .an by application of lexical axioms

w → ai ∈ Lex

We give here an example of a deduction in NL involving hypothetical rea-
soning.

Example 2.12. Consider the lexicon A2 in Example 2.10.

We prove n⊗ (s/(n\s))\s → s.

n\s → n\s

n⊗ n\s → s

n → s/(n\s)

(s/(n\s))\s → (s/(n\s))\s

s/(n\s)⊗ (s/(n\s))\s → s

s/(n\s) → s/((s/(n\s))\s)

n → s/((s/(n\s))\s)

n⊗ (s/(n\s))\s → s

Then, by means of one transition of the form a b → a⊗ b we have:

n (s/(n\s))\s ⇒ n⊗ (s/(n\s))\s

Finally, by means of lexical axioms

John ismissing ⇒+ n (s/(n\s))\s

Although the previous example does not illustrate this aspect, we remark
that in NL the product is not ‘ornamental’8. It allows to distinguish the syn-
tactic structures projected by heads of the form in A from those of the form
in B below, which are instead (row by row) interderivable in the calculus of
[Lambek, 1958].

A B

a/(b⊗ c) (a/c)/b

(c⊗ b)\a b\(c\a)

For instance, one may prefer to assign to a multi-complement verb, say the
ditransitive gives, a category like (n\s)/(n⊗n), that projects a right branching
structure, rather than the left branching category (n\s)/n/n.

8As it is in the syntactic calculus due to structural completeness.

Background 23

Algebraic semantics

NL is also called the pure logic of residuation. Let us explain why. If M is
a non-empty set and ◦ is a binary operation on M, then the structure (M, ◦)
is called a groupoid. Furthermore, if 6 is a partial ordering on M (that is
a reflexive and transitive relation) and � and � are binary operations on M

fulfilling the equivalences

a 6 c � b iff a ◦ b 6 c iff b 6 a � c

then the structure (M, ◦,�,�,6) is called a residuated groupoid. A model is a
pair (M, v), of a residuated groupoid M (with universe M) and an interpretation
function v which maps atomic formulas into elements of M. The function v is
extended to formulas by the following clauses:

v(a⊗ b) = v(a) ◦ v(b)

v(a/b) = v(a) � v(b)

v(b\a) = v(b) � v(a)

A sequent a → c is said to be true in a model (M, v) if v(a) 6 v(c). Sequents
derivable in NL are precisely those sequents which are true in all residuated
groupoid models as proved in [Szczerba, 1997], see also [Buszkowski, 1997,
2005].

Frame semantics

Formulas of NL can also be interpreted in modal frames. A modal frame F, is a
pair (W, {R3}), where W is a set possible worlds and R3 is a ternary accessibility
relation. We refer to [Blackburn et al., 2001] for an introduction to modal logic
and to [Kurtonina, 1995; Moortgat, 1997; Buszkowski, 1997] for the application
of modal logic to Lambek calculi. A model is a pair (F, v), of a modal frame
F and an interpretation function v which maps formulas into subsets of W.
Assuming that the interpretation of every atom is given, compound formulas
are interpreted as follows (here we use the symbol ⇒ as shorthand for implies).

Definition 2.27. Interpretation of formulas:

v(a⊗ b) = { x | ∃y∃z (R3(x,y, z) & y ∈ v(a) & z ∈ v(b)) }

v(a/b) = { y | ∀x∀z ((R3(x,y, z) & z ∈ v(b)) ⇒ x ∈ v(a)) }

v(b\a) = { z | ∀x∀y ((R3(x,y, z) & y ∈ v(b)) ⇒ x ∈ v(a)) }

Completeness of NL with respect to modal frames is proved in [Došen, 1992].

Proposition 2.3. [Došen, 1992]

`NL a → c iff v(a) ⊆ v(c) for every evaluation v on every ternary frame.

24 2.5. Lambda terms

[Kurtonina, 1995] and to [Kurtonina and Moortgat, 1997] generalize this
completeness result to other logics resulting from NL by addition of some set
of structural postulates (see section 2.8).

In the next sections, we will see another aspect of categorial semantics,
one which is common to both CCG and Lambek style categorial grammars.
We introduce the lambda calculus and examine the so called formula-as-type
correspondence, also known has Curry-Howard correspondence, see [Howard,
1980].

2.5 Lambda terms

The lambda calculus is the term language used in model theoretic semantics to
build semantic representations of linguistic expressions in accordance with the
compositionality principle. For our proposes, we can define the lambda term
language as follows.

Definition 2.28.

Var := x1 | x2 | . . .
Con := c1 | c2 | . . . | cn

Lam := Var | Con | λVar. Lam | (Lam Lam)

| 〈Lam, Lam〉 | π1(Lam) | π2(Lam)

We show variables in Var as x, y or z, in which case different letters denote
different variables9. A term λx.t is called an abstract, (t1 t2) is called appli-
cation, 〈t1, t2〉 pair and π1(t) and π2(t) are the first and second projections,
respectively. In order to simplify the notation, we assume that application is
left associative, thus we write the term ((t1 t2) t3) as (t1 t2 t3). Furthermore,
as far as it creates no ambiguity, we write πi(x) as πix, i = 1 or i = 2.

Definition 2.29.

The scope of λx in λx.t is t.

A variable x is said to be free in a lambda term t, if it is not in the scope of a
λx. Otherwise it is said to be bound.

As stated in [Blackburn and Bos, 2003], “the lambda calculus is a tool
for controlling the process of making substitutions”. Roughly, a term of the
form λx.t is a functor that applied to an argument term v gives as result
the term t with each occurrence of x replaced by the term v. For instance,
(λx.(+ x 3) 2) = (+ 2 3).

The definition of substitution given below is partially taken from [Hindley,
1997] and extended to the case of constant, pair and projection terms. We
denote FV(t) the set of free variables of the term t.

9Later, we will use variables x, y or z also for formulas. However it should always be
clear what we are talking about.

Background 25

Definition 2.30. Substitution: t[x := t ′] is the result of substituting t ′ for x

in t. Formally,

x[x := v] = v

x[y := v] = x

c[y := v] = c if c ∈ Con

〈t1, t2〉[y := v] = 〈t1, [y := v], t2[y := v]〉
πi(t)[y := v] = πi(t[y := v]) i = 1 or i = 2
(t1 t2)[y := v] = (t1[y := v] t2[y := v])

(λ x.t)[x := v] = λ x.t
(λ x.t)[y := v] = λ x.t if y /∈ FV(t)

(λ x.t)[y := v] = λ x.(t[y := v]) if y ∈ FV(t) and x /∈ FV(v)

(λ x.t)[y := v] = λ z.(t[x := z][y := v]) if y ∈ FV(t) and x ∈ FV(v)

We observe that we are adopting the untyped variant of the lambda calculus.
This means that expressions as (x x) are well formed. We will dedicate the next
section to typed lambda calculus and discuss its connection with categorial logic.

The following equalities define the basic steps of term reduction. In fact,
these equalities should be seen as rewriting rules. In each case, the term on
the left of the equality symbol, called redex, is rewritten into the equivalent,
though shorter, term on the right, called contractum. We put on the left column
β-contraction and on the right η-contraction.

Definition 2.31.

Contraction: term equations for lambda terms

β-contraction η-contraction

πi〈t1, t2〉 = ti, i = 1 or i = 2 〈π1t,π2t〉 = t

((λx.t) v) = t[x := v] λx.(t x) = t, if x /∈ FV(t)

A reduction is a series of contractions.

A term is normal, if no contraction can be applied to it.

2.6 Typed lambda calculus

In the type free lambda calculus, each functional term is from lambda terms
to lambda terms, without restrictions. The typed lambda calculus is a proper
subset of the full lambda calculus (for example, self-application terms, like (x x),
are not in the typed calculus). In this system, each lambda term has a single
type associated with it. If a typed term t is functional, its type determines

26 2.6. Typed lambda calculus

the domain of its possible argument terms as well as the domain of the result
of applying t to its arguments. We underline here informally the parallel with
the categorial formalism: an expression of functional category, say a

b , combines
with an expression of category b to give an expression of category a. In other
words, syntactic categories are equivalence classes of linguistic expressions in
the same way in which types are equivalence classes of lambda terms. We
will see below that there is indeed a close correspondence between formulas
of categorial grammar, types and typed terms that provides a strong ground
for model theoretic semantics. This aspect of categorial logic has been deeply
investigated in [van Benthem, 1991] and [Hendriks, 1993].

For our proposes, we can define the type language as follows.

Type := e | t | Type → Type | Type× Type

The types e and t are the primitive types of individuals and truth values,
respectively. Any other type is either a function from a type to a type or a
product of types. Intuitively, we can think of an object of type p → q as a
function from objects of type p to objects of type q, while objects of type p×q

are the Cartesian product of objects of type p and objects of type q.
Syntactic categories can be mapped into types in a straightforward way.

Indeed, the type results from the category by ignoring the orientation of the
slashes.

Definition 2.32. Let ty be a function from syntactic categories to types,
ty :: F → Type. Let ty(x) be given for all the x ∈ A, for instance ty(n) = e

and ty(s) = t. Compound formulas are mapped to compound types as follows:

ty(a/b) = ty(b) → ty(a)

ty(b\a) = ty(b) → ty(a)

ty(b⊗ a) = ty(b)× ty(a)

In [Moortgat, 1997] and [Moot, 2002], one can find a so called Church style
definition of typed lambda terms in which each term constructor is assigned
to a type. Instead, we are adopting an approach which is more in the style of
[Curry and Feys, 1958], see also [Hindley, 1997]. This means that while our
definition of the lambda term language is type-free, as it admits terms as (x x),
we define typed terms as those lambda terms which can be assigned a type.

Below we present the basic rules for assigning types to lambda terms, when
this is possible. The rules for typing lambda terms are deductive rules which
operate on type assignments, objects of the form t :p, where t is a term and p

is a type (variable), whose meaning is ‘t is a term of type p’. Typing rules are
expressed in the form of typing judgements of the form

{x1 :p1, . . . xn :pn} ` t :p

with the meaning that ‘if xi :pi, 1 6 i 6 n, then t is a well formed term of type
p’. In such judgemets, all free variables of t must be contained in {x1, . . . , xn}.

Background 27

Furthermore, we assume, without stating it explicitly in the rules in Definition
2.33, that each type judgement is consistent, that is no variable is assigned more
than one type. The lack of consistency leads to failure of the type assignments.
Here we use Γ , Γi, 0 6 i as variables over sets of type assigments.

Definition 2.33. Typing rules for typed lambda calculus:

Γ ∪ {x : p} ` x : p

Γ1 ` t1 : q → p Γ2 ` t2 : q

Γ1 ∪ Γ2 ` (t1 t2) : p

Γ ∪ {x : q} ` t : p

Γ ` λx.t : q → p

Γ ` t : p× q

Γ ` π1t : p

Γ ` t : p× q

Γ ` π2t : q

Γ1 ` t1 : p Γ2 ` t2 : q

Γ1 ∪ Γ2 ` 〈t1, t2〉 : p× q

To be precise, the typing rules operate on type variables p, q Thus
the result of a type deduction is a type schema for the input lambda term. A
more detailed description of the typing algorithm for lambda calculus, including
polymorphism and unification, can be found in [Hankin, 2004] which in turn
is based on [Damas and Milner, 1982]. In the first of the examples below, we
directly unify the type of the term with the type resulting for the syntactic
category.

Example 2.13. Typing terms.

1. The word himself is assigned the category ((n\s)/n)\n\s and the term
λxλy.(x y y). We have ty(((n\s)/n)\n\s) = (e → (e → t)) → (e → t)
and the following typing deduction.

{x :e → (e → t)} ` x :e → (e → t) {y :e} ` y :e

{x :e → (e → t),y :e} ` (x y) :e → t {y :e} ` y :e

{x :e → (e → t),y :e} ` (x y y) :t

{x :e → (e → t)} ` λy.(x y y) :e → t

∅ ` λxλy.(x y y) : (e → (e → t)) → (e → t)

2. We type the term λxλy.x:

{x :p, y :q} ` x : p

{x :p} ` λy.x : q → p

∅ ` λxλy.x : p → q → p

28 2.7. Extended categorial grammars

3. The term λx.(x x) cannot be typed. Assume that it were. Then it is a
function p → r, where p is the type of x and r is the type of (x x). Then
x should be of type p → r, which gives an inconsistent type judgement.

2.7 Extended categorial grammars

By extended deductive systems we mean a deductive system extended with
proof-encoding terms of some sort. If we are interested in compositional seman-
tics, the term language will be the lambda term language. However, depending
on the purposes, different term languages may be useful. For example, [Lam-
bek, 1993] uses a term language isomorphic to deductions in the non-associative
Lambek calculus and defines proof normalization via the term equations aris-
ing from the cut elimination algorithm. [Moortgat and Oehrle, 1997] adopt a
similar term language.

Each sequent of an extended deductive system is paired with a term. We
call arrow an object of the form f : Γ → ∆, where f is a term and Γ → ∆ is a
sequent.

Definition 2.34. An extended deductive system is a quadruple 〈F,T,AX,R〉
such that

- T is a term language (for example the lambda calculus).

- AX = { t : Γ → ∆ | t ∈ T, Γ ,∆ ∈ F∗ }.

- R is a set of inference rules of the form
f1 : Γ1 → ∆1 . . . fn : Γn → ∆n

ρ(f1 . . . fn) : Γ → ∆

where ρ is a syntactic operation on terms such that ρ(f1 . . . fn) ∈ T.

The functional character of lambda calculus and categorial logics allows
to interpret each inference rule as an operation on lambda terms. We use
uppercase greek letters for bracketed strings of categories. Let us extend the
function ty as to apply to such bracketed strings of categories by adding the
clause

ty((Γ ,∆)) = ty(Γ)× ty(∆)

An arrow with semantic term is always an object of the form

λx.v : Γ → c

such that the type of the term is (unifiable with) the type of the sequent:
both are functions from a Γ -type object to a c-type object. Thus, for instance,
identity axioms are always of the form

λx.x : a → a

We define now the rules with semantic terms for the Ajdukiewicz–Bar-Hillel
calculi that we saw before.

Background 29

Definition 2.35. Rules with semantic annotation for Ajdukiewicz–Bar-Hillel
calculi:

u : Γ → a v : ∆ → b

λx.〈(u π1x), (v π2x)〉 : (Γ , ∆) → a⊗ b

v : Γ → a/b u : ∆ → b

λx.(v π1x (u π2x)) : (Γ , ∆) → a

u : Γ → b v : ∆ → b\a

λx.(v π2x (u π1x)) : (Γ , ∆) → a

v : Γ → a/b u : ∆ → b/c

λxλy.(v π1x (u π2x y)) : (Γ , ∆) → a/c

u : Γ → c\b v : ∆ → b\a

λxλy.(v π2x (u π1x y)) : (Γ , ∆) → c\a

Observe that we added brackets to the antecedent of the conclusion of each
rule. Their role will be explained in Definition 2.38 on page 31.

Let us define define the class of categorial lambda terms. These are the
terms which can be constructed in categorial deductions. We say that πix is
free in t if it is non in the scope of λx.

Definition 2.36. Categorial lambda terms.

We say that x ∈ Var is linear in the term t if and only if

1. x has exactly one free occurrence in t, or

2. x is of type p × q and there is exactly one free occurrence of π1x and
exactly one free occurrence of π2x in t. Then, let u and v be two variables
of type p and of type q, respectively, which do not occur in t. Let t ′ be
the result of substituting u for the free occurrence of π1x and v for the
free occurrence of π2x in t. Then x is linear in t, if u and v are linear in
t ′.

A lambda term t is categorial if and only if t contains no free variables and for
every subterm λx.t ′ of t, x is linear in t ′.

In fact, the constraints on categorial lambda terms apply only to the terms
built in the categorial deductions. Instead, at the lexical level one is, to some
extent, free to violate them. An example of the lexical violation of the con-
straints in Definition 2.36 is the assignment of the reflexive pronoun, himself,
whose category is ((n\s)/n)\(n\s) and whose term assignment is λxλy.(x y y).

30 2.7. Extended categorial grammars

Figure 2.2 on page 33, contains several examples of lexical assignments that
violate the constraints on categorial lambda terms.

We define extended categorial grammars.

Definition 2.37. An extended categorial grammar is a categorial grammar
based on an extended deductive system D and whose lexicon Lex contains
triples 〈t,w, c〉, which we write as t : w → c, where w ∈ (Vt ∪ {ε}), c ∈ F and
t ∈ T, the term language of D.

The following is the variant of lexicon A1 resulting by adding semantic
terms. Well-typing requires that for each lexical arrow the type of the lambda
term is the same as that of the category to which it is associated. Thus, j

and m are constants of type e, loves ′ is of type e → (e → t), ismissing ′ is
of type e → t and ismissing∗ is of type ((e → t) → t) → t. ∃ and ∀ are
constants of type (e → t) → t. An expression ∃x v is shorthand for (∃ λx. v),
which is the term resulting from application of the constant ∃ to the term λx. v
of type e → t10. The same holds for ∀x v. The type of the other terms can
be easily recovered from the category. We will see immediately that the well
typing constraints are enforced by the categories in the derivation. Hence, we
do not need to explicitly distinguish variables of different types.

Example 2.14. Figure 2.1 presents lexicon A1 with semantic annotation:

j : John → n

m : Mary → n

λx.∃y (x y) : someone → s/(n\s)

λx.∀y (x y) : everyone → (s/n)\s

λxλy.∀z ((x z) y) : everyone → ((n\s)/n)\(n\s)

loves ′ : loves → (n\s)/n

ismissing ′ : ismissing → n\s

ismissing∗ : ismissing → (s/(n\s))\s

Figure 2.1: A categorial lexicon with semantic annotation.

The notion of generation is extended to the systems enhanced with lambda
terms in order to assign a semantic representation to the strings generated.

10Observe that λx.∃y (x y) assigned to someone in lexicon A1 η-reduces to ∃. Indeed,
we could use this reduced form in the lexicon. However, we preferred to keep the more
traditional notation for quantifiers.

Background 31

Definition 2.38. An Ajdukiewicz–Bar-Hillel categorial grammar with seman-
tic terms G = 〈Vt, s,Lex,D〉 generates a string w0 . . .wm ∈ V∗

t and assigns it
the semantic representation t if and only if D generates f : Γ → s and t = (f t ′),
where

1. Γ is a structure living on a0 . . .an, m 6 n,

2. w0 . . .wm ⇒+ a0 . . .an by means of lexical axioms

ti : w → ai ∈ Lex

3. t ′ is obtained by replacing in Γ each ai with ti and each (with 〈 and
each) with 〉.

In this definition, the structural information encoded by Γ is exploited in
3 to build a lambda term t ′, which is a pair structure living on the terms
t0 . . . tn assigned, respectively, to a0 . . .an in the lexicon. The term t ′ encodes
the lexical semantics of w0 . . .wm according to G. The derivational semantics
instead is encoded in the term f resulting from the deduction. The semantic
representation t of w0 . . .wm in G is given by the application of the derivational
term f to the lexical term t ′, that is t = (f t ′).

The deductions given in Example 2.9 on page 18 are now proposed once
more with lambda term decorations. For reasons of space we add the following
macros to those in Definition 2.22.

Definition 2.39. Macros.

qs := s/iv

qo := (s/n)\s

In the deductions below, we show the terms in normal form.

Example 2.15. Deductions with semantic annotation.

1. Deduction 1 of Example 2.9.

λx.x : qs → s/iv λy.y : tv → iv/n

λxλy.(π1x (π2x y)) : qs, tv → s/n λz.z : qo → qo

λx.(π2x λk.(π1π1x (π2π1x k))) : (qs, tv), qo → s

Lexical semantics: from the bracketed string of categories (qs, tv), qo

and A1, we obtain the term 〈〈λ x.∃y (x y), loves ′〉, λ x.∀y (x y)〉. Thus
we shall reduce the term

(λx.(π2x λk.(π1π1x (π2π1x k))) 〈〈λ x.∃y (x y), loves ′〉, λ x.∀y (x y)〉)

which gives the following semantic representation for someone loves ev-
eryone:

∀z∃y (loves ′ z y)

32 2.7. Extended categorial grammars

2. Deduction 2 of Example 2.9, instead, assigns the lambda term

∃y∀z (loves ′ z y)

to the input string, as the reader can easily check.

We conclude this section by presenting NL with semantic annotation.

Definition 2.40. Pure logic of residuation, NL.

- Identities:

Axioms Cut

λx.x : a → a

v : a → b u : b → c

λx.(u (v x)) : a → c

- Residuation rules:

v : a⊗ b → c

λxλy.(v 〈x,y〉) : a → c/b

v : a → c/b

λx.(v π1x π2x) : a⊗ b → c

v : a⊗ b → c

λxλy.(v 〈y, x〉) : b → a\c

v : b → a\c

λx.(v π2x π1x) : a⊗ b → c

Figure 2.2 on the next page presents some examples of semantically an-
notated lexical entries for a NL lexicon. We added the atomic types i, for
infinitive, and b, for base form. With such assignments we can generate sen-
tences like John seems to leave and it seems that John leaves as truth condition-
ally equivalent (observe the vacuous abstraction in the sentential complement
seem). Both reduce to the term

(seem ′ (leave ′ j))

We have also examples of multiple occurrences of the same projection terms
and of the same variable in the object controlled verb persuaded and in the
subject controlled promised and wants, respectively. This gives, for instance

John persuaded Mary to leave : (persuade ′ m (leave ′ m) j)

John promised Mary to leave : (promise ′ m (leave ′ j) j)

Consider the following two examples, from which we omit the derivational
component, as easily recoverable from the given sequents. We also simplify
the notation for the terms in the following way: we write πi

nx for the term
πi

n . . .πi
1x.

Example 2.16.

John gave Mary a book.

Background 33

j : John → n

m : Mary → n

λx.(x y) : it → s/(n\s)

give ′ : gave → (n\s)/(n⊗ n)

λxλy.(seem ′ x) : seems → (n\s)/s

seem ′ : seems → (n\s)/i

λx.(persuade ′ π1x (π2x π1x)) : persuaded → (n\s)/(n⊗ i)

λxλy.(promise ′ π1x (π2x y) y) : promised → (n\s)/(n⊗ i)

λxλy.(want ′ (x y) y) : wants → (n\s)/i

praise ′ : praises → (n\s)/n

leave ′ : leave → b

leave ′ : leaves → n\s

ismissing ′ : ismissing → (s/(n\s))\s

a ′ : a → n/c

book ′ : book → c

λx.x : that → s/s

λx.x : to → i/b

λxλy.〈y, x〉 : to → (n\(n⊗ n))/n

λxλy.(x y y) : himself → ((n\s)/n)\(n\s)

Figure 2.2: A categorial lexicon with semantic annotation.

1. n⊗ (iv/(n⊗ n)⊗ (n⊗ (n/c⊗ c))) → s

2. Derivational semantics:

λx.(π1π2x 〈π1π2
2x, (π1π2

3x π2
4x)〉 π1x)

3. Lexical semantics:

〈A, 〈give ′, 〈R, 〈a ′,book ′〉〉〉〉

4. Meaning representation:

((give ′ 〈m, (a ′ book ′)〉) j)

John gave a book to Mary.

34 2.8. Multi-modal type-logical grammars

1. n⊗ (iv/(n⊗ n)⊗ ((n/c⊗ c)⊗ ((n\(n⊗ n))/n⊗ n))) → s

2. Derivational semantics:

λ x.(π1π2x (π1π2
3x π2

4x (π1
2π

2
2x π2π1π2

2x)) π1x)

3. Lexical semantics:

〈j, 〈give ′, 〈〈a ′,book ′〉, 〈λxλy.〈y, x〉,m〉〉〉〉

4. Meaning representation:

((give ′ 〈m, (a ′ book ′)〉) j)

We observe that both syntactic structures are right branching, in accordance
with the intuitions. Furthermore, both constructions obtain the same semantic
representation. While other frameworks would appeal to meaning postulates
to express equivalence of the two constructs (see for instance [Gazdar et al.,
1985]) we obtain this result by assigning the preposition to the term λxλy.〈y, x〉,
encoding a commutation in the order of its arguments. We remark that while
syntactically inadequate, the assignment (n\s)/n/n for the ditransitive verb
should be associated to two different semantic translations to achieve the same
effect.

From NL, we obtain the calculus of [Lambek, 1958], the so called syntactic
calculus, by adding the labeled variant of the structural rules of associativity:

λx.〈〈π1x,π1π2x〉,π2π2x〉 : a⊗ (b⊗ c) → (a⊗ b)⊗ c

λx.〈π1π1x, 〈π2π1x,π2x〉〉 : (a⊗ b)⊗ c → a⊗ (b⊗ c)

However, the extension of a logical system by means of a set of structural rules
is a general process in the type-logical setting and we dedicate the next section
to this aspect of categorial logics.

2.8 Multi-modal type-logical grammars

Multi-modal type-logical grammars are a generalization of categorial grammars.
The rules of associativity of the syntactic calculus of [Lambek, 1958], which we
assumed implicitly in our formulation of L, have a somewhat special status:
they are structural rules. As we mentioned before, the syntactic calculus results
from NL by adding the structural rules of associativity. More in general, the
framework of multi-modal type-logical grammar assumes that NL is the basic
deductive engine (the pure logic of residuation) and that other logics are defined
by adding to NL a package of structural rules. Thus, a type-logical system is
a pair 〈Q,NL〉, where Q is a set of structural postulates. Let us give some
examples of structural postulates and of the logics that we can define. We refer
the reader to [Došen, 1988] for a larger set of postulates (though without term
labeling).

Background 35

Example 2.17.

Associativity, A:

A1 λx.〈〈π1x,π1π2x〉,π2π2x〉 : a⊗ (b⊗ c) → (a⊗ b)⊗ c

A2 λx.〈π1π1x, 〈π2π1x,π2x〉〉 : (a⊗ b)⊗ c → a⊗ (b⊗ c)

Permutation, P:
λx.〈π2x,π1x〉 : b⊗ a → a⊗ b

Contraction, C:
λx.〈x, x〉 : a → a⊗ a

Weakening, W:

W1 W2

λx.π1x : a⊗ b → a λx.π2x : b⊗ a → a

The addition to NL of a subset of these postulates identifies a logic. For
instance:

Intuitionistic logic: IL = 〈{A,P,W,C},NL〉.
Commutative Lambek calculus: LP = 〈{A,P},NL〉, studied by [van Benthem,
1991] and [Hendriks, 1993] among others.

Lambek syntactic calculus S = 〈{A},NL〉, formulated in [Lambek, 1958].

Taken in isolation, none of these systems is suited for natural language
analysis. Linguistic reasoning is highly restrictive on the multiplicity of the
resources, thus postulates C and W should not be assumed in a natural language
grammar11. The natural candidates for natural language grammar seem to lay
in between LP and NL. However, while the Lambek-van Benthem calculus is
too permissive, as it admits any permutation of the input string, NL is too
restrictive as it generates only context-free languages as proved in [Kandulski,
1988].

In second place, the introduction of structural postulates into the grammar
system, in the naive way in which it has been presented before, obscures more
properties of the language structure than it reveals. For instance, S loses track
of all the structural information that a derivation in NL encodes. The price to
pay for such a global introduction of structural reasoning may be too high with
respect to its benefits.

11In fact, some syntactic phenomena seem to involve multiple binding at the derivational
level. Constructions like which book did Mary file without reading? are dealt with in the
combinatory categorial setting by means of the combinator (a\b)/c → (a/c)\(b/c), which
would be derived in the type-logical setting by means of contraction C.

36 2.8. Multi-modal type-logical grammars

The multi-modal setting

The multi-modal setting of Moortgat [1996, 1997] solves these problems in the
following way. The notion of syntactic category is generalized to n-ary type
constructors (n > 1) and distinguished composition modes.

Definition 2.41. Multi-modal formulas:

F := A | /n
i (F1, . . . ,Fn) | \n

i (F1, . . . ,Fn) | ⊗n
i (F1, . . . ,Fn)

In this definition, n is a positive integer expressing the arity of the connec-
tive and i an index, the so called composition mode distinguishing for example
⊗n

j from ⊗n
k . In previous systems, n = 2 and there was only one composition

mode. In [Buszkowski, 2005], one can find a Gentzen style sequent calculus for-
mulation of the generalized Lambek calculus with n-ary type forming operators.
In linguistic applications, one usually works with n 6 2. Every distinguished
connective obeys the laws of the pure logic of residuation. However, by specify-
ing the modes appearing in the structural rules, one specifies also the syntactic
configurations which are subject to these rules. Hence, which configurations of
categories are subject to what kind of restructuring.

In recent years, the research on type-logical grammar has tried to identify
the packages of structural rules required for natural language analysis. [Moort-
gat, 1996] proposes the following forms of mixed commutativity, MP, and mixed
associativity, MA, to deal with discontinuous dependencies.

Example 2.18. Mixed postulates:

MP a⊗i (b⊗j c) ↔ b⊗j (a⊗i c)

MA a⊗i (b⊗j c) ↔ (a⊗i b)⊗j c

We remark that the addition of the unlabeled variants of MP and MA to NL

would collapse the system into LP, as proved in [Moortgat, 1988]. However,
the introduction of such modalized postulates guarantees that only specific
configurations will access their restructuring power.

More recently, [Vermaat, 2005] analyzes the realization of long distance
dependencies in several languages with the tools of type-logical grammar. Ver-
maat uses the postulates of [Moortgat, 1999], which in turn are variants of the
mixed postulates in Example 2.18. The main difference consists in the use of
unary operators to mark the substructure subject to displacement.

The unary operators have a special role in the multi-modal setting. They
are the diamond ♦i = ⊗1

i and its residual, the box 2i.

Definition 2.42. Unary residuation rules:

♦ia → c
a → 2ic

a → 2ic

♦ia → c

Background 37

The interpretation of unary formulas is given by extending the modal frame
F which we described just before Definition 2.27 on page 23, to a pair (W, {R2,R3}),
where R2 a binary relation. The model-theoretic interpretation v is extended
to unary formulas in the straightforward way:

v(♦a) = { x | ∃y (R2(x,y) & y ∈ v(a)) }

v(2a) = { y | ∀x (R2(x,y) ⇒ x ∈ v(a)) }

These operators have found a wide range of applications in categorial lin-
guistics. One option is to use them for a regimented interaction with the
structural module of the grammar. Vermaat adopts the following postulates
for long distance dependencies.

Example 2.19. Displacement postulates, from [Moortgat, 1999]12:

♦a⊗ (b⊗ c) → (♦a⊗ b)⊗ c

(a⊗ b)⊗♦c → a⊗ (b⊗♦c)

♦a⊗ (b⊗ c) → b⊗ (♦a⊗ c)

(a⊗ b)⊗♦c → (a⊗♦c)⊗ b

We observe that only the specific ternary configurations in which the dia-
mond marker appears are subject to these forms of restructuring. The occur-
rence of diamond decorations in a deduction, in turn, is ultimately triggered
by some lexical item. Hence restructuring is always local and lexically driven
and controlled. We should also mention that Vermaat claims that such package
of structural postulates is language universal, that means that it is capable of
accounting for all forms of variation across natural languages.

Recent literature on type-logical grammar exemplifies a wide range of syn-
tactic phenomena which can be elegantly analyzed in the multi-modal setting.
[Heylen, 1999] develops a feature theoretic syntax relying on the unary logic.
He also explores the expressivity of various forms of unary distribution postu-
lates expressing different forms feature percolation. In [Bernardi, 2002], the
unary operators are employed to express co-occurrence restrictions on polar-
ity sensitive items. [Kraak, 1995] analyzes the phenomenon of so called clitic
climbing in Fench. In her treatment, the box marks the verbal head and the
clitic pronouns: then unary distribution postulates enforce clitic climbing and
‘attachment’ of the clitic to the verb. Finally, in [Hendriks, 1999], the diamond
is used as a prosodic selector.

We remark that the technique of multi-modal control has been imported
also in CCG. For instance, in [Baldridge, 2002; Kruijff and Baldridge, 2003],
different forms of multi-modal control have been adopted and successfully ap-
plied to the analysis of several syntactic and prosodic phenomena.

12Unary operators are assumed to have higher precedence over binary operators. Thus
♦a⊗ b is interpreted as (♦a)⊗ b.

38 2.9. Generative power of categorial grammars

Extending the logical vocabulary

The type-logical approach is currently being developed in the direction of the
further enrichment of the logical vocabulary, see [Bernardi and Moortgat, 2007]
and [Moortgat, 2007]. Categorial formulas are defined as follows.

F := A | F/F | F\F | F ⊗ F | F � F | F ; F | F ⊕ F

The connectives � and ; just introduced are called right and left co-slashes,
respectively, and ⊕ co-product. The deductive system operating on these for-
mulas is a refinement of a system originally presented in [Grishin, 1983]. To
the rules of NL, we add the following rules:

a ; c → b

c → a⊕ b

c� b → a

c → a⊕ b

c → a⊕ b

a ; c → b

c → a⊕ b

c� b → a

We call the resulting system NG. These rules are symmetric to those of NL

with respect to the arrow symbol. Thus, for instance, while in NL we has lifting

a → c/(a\c)

in NG one can prove also its symmetric

c� (a ; c) → a

Indeed, for every theorem of NL, also the symmetric dual holds in NG. More
interesting are however the theorems arising by adding to NG the following
interaction postulates.

Definition 2.43. Interaction principles:

mal (a ; b)⊗ c → a ; (b⊗ c)

mcl a⊗ (b ; c) → b ; (a⊗ c)

mar a⊗ (b� c) → (a⊗ b)� c

mcr (a� b)⊗ c → (a⊗ c)� b

These postulates are variants of the displacement postulates which we saw
before.

2.9 Generative power of categorial grammars

I conclude this chapter by recalling some results about the generative power of
categorial grammars. For a thorough discussion of this topic, I refer the reader

Background 39

to [Buszkowski, 1997] and to the works he draws upon.
The weak equivalence of CF grammars and AB grammars, known as Gaif-

man theorem, was proved in [Bar-Hillel et al., 1964]. [Buszkowski, 1988] estab-
lishes the equivalence in strong generative power of the two systems, see also
[Buszkowski, 1997]. Finally, the weak equivalence of AB⊗ and CF grammars is
proved in [Kandulski, 1988].

The rules of the Ajdukiewicz–Bar-Hillel systems that we saw in this chapter
(apart from the product rule) are a subset of the rule component of combinatory
categorial grammar, see [Ades and Steedman, 1982; Steedman, 2000b]. The
generative power of combinatory categorial grammar depends on the set of
rules which is adopted. While the Ajdukiewicz–Bar-Hillel grammars that we
saw are all context-free, the addition of other rules, as the so called mixed
Geach rules

Γ → a/b ∆ → c\b

Γ∆ → c\a

Γ → a/b ∆ → a\c

Γ∆ → c/b

increases the generative power to mildly context-sensitive. We refer to [Weir and
Joshi, 1988; Vijay-Shanker and Weir, 1994] for a proof and to [Steedman, 2000b]
for discussions and linguistic applications of combinatory categorial grammar.

Concerning Lambek style categorial grammars, [Buszkowski, 1986] and [Kan-
dulski, 1988] prove the equivalence of NL grammars, respectively without and
with product, and CF grammars. The proof of context-freeness of the gram-
mars based on the syntactic calculus, which has been an open problem for more
than thirty years, was given in [Pentus, 1993].

With regard to the strong generative power of Lambek style categorial gram-
mars, we refer to [Tiede, 1998, 1999b] for an alternative notion of generated
structure, see also [Le Nir, 2003a]. In these works, the structures generated
are assumed to be the proof trees themselves. It turns out that the proof trees
in the product-free non-associative Lambek calculus are regular trees, hence
context-free, while in the case of the product-free associative Lambek calculus
they are non-regular, hence richer than context-free.

The generative power of multi-modal type-logical grammar depends on the
package of structural postulates which is assumed by the deductive engine and
on the way the lexical resources are allowed to interact with the structural
module. [Carpenter, 1996] shows that if the structural rules duplicate or erase
formulas, multi-modal type-logical grammars are Turing-complete. In fact,
[Moot, 2002] shows in Section 9.3 that even with linear structural rules for
the binary operators (that is no contraction nor weakening), the multi-modal
system may be undecidable since the structural rules for unary operators may
be used to “encode the recognition problem for type 0 languages”. However,
Moot proves also that if all its postulates are non-expanding every multi-modal
grammar is equivalent to some context-sensitive grammar.

An interesting subject for research is that of the generative power of a type-
logical grammar adopting a more restricted set of structural postulates as, for

40 2.10. Conclusion

instance, the mixed postulates of [Moortgat, 1996, 1999] which we saw be-
fore. Clearly, the mixed postulates can derive modalized variants of the mixed
Geach rules, as shown in [Moortgat, 1997], [Vermaat, 2005] and [Baldridge,
2002]. However, a number of restrictions can be imposed to the postulates and
to their application. For instance, one may enforce some forms of asymme-
tries, as unidirectional application of structural postulates, or the constraint
that for each application of a structural postulate, there should be a ‘mirror’
application of the symmetric postulate. Such restrictions may also reduce the
computational complexity of multi-modal type-logical grammars (an issue that
I will discuss at the end of Chapter 3).

2.10 Conclusion

In this chapter, I have introduced some of the notions and of the formal systems
that we will use throughout this book. We will continue to study Ajdukiewicz–
Bar-Hillel categorial grammars in Chapters 3 and 4, and I will show how these
systems can be regimented for automatic theorem proving. The second part of
the book is instead about NL and we will see how we can use NL grammars
for normal form parsing.

Part I

Automated Reasoning

Chapter 3

Deductive Parsers

This chapter presents the CF and AB⊗ systems as parsing systems, that
is to say as deductive systems in which the construction of a deduction

takes advantage of the linear order of the syntactic categories involved. My
contribution consists in the application of the well known CYK and Earley
parsing systems to AB⊗ grammars and in the formulation of an original parsing
system specific to AB⊗ grammar.

As AB⊗ grammars are equivalent to CF grammars, it is not too surprising
that the standard parsing methods for CF grammars can be applied also to
AB⊗ grammars. In fact, there is a straightforward way of translating an AB⊗

grammar into an equivalent CF grammar which allows to apply CF parsing
methods to the resulting grammar. This method is used for instance in [Finkel
and Tellier, 1996]. However, the result of such a translation is a CF grammar
which is much bigger than the original AB⊗ grammar as we show in Example
3.3 on page 46. Indeed, this approach fails to take advantage of the abstract
character of the inference rules of the AB⊗ system and of their independence
from any non-logical stipulation. As we saw in Chapter 2, in the case of CF

grammars each inference step is determined by the productions of the grammar.
In the case of AB⊗ grammars, instead, the lexicon determines which axioms
take part in the deduction, while the construction of the deduction relies only
upon the abstract rules of the deductive system and is entirely independent of
the grammar. As the size of the input grammar is relevant for the efficiency of
these parsing methods, it is worthwhile to explicitly formulate parsing systems
for AB⊗ grammars which make direct use of the abstract inference schemes
proper to the categorial system.

A formulation of the CYK deductive parser for CCG grammars can be found
also in [Shieber et al., 1995]. However, the CYK deductive parser that I will
present is designed for AB grammars with product. The Earley style parsing
system which I design for AB⊗ is entirely new1. Furthermore, I propose a new

1In fact, [Hepple, 1999] presents an Earley style parser for Lambek grammars. On the
other hand, this parser uses a number of extra-logical methods, as index sharing and first-

44 3.1. Problems

parsing system for AB⊗ grammars, which I call AB⊗
Mix as it results from the

‘fusion’ of CYK and Earley, incorporating all the best features of the CYK and
Earley system for AB⊗ grammars.

In the first part of the chapter, we will see that the CYK and Earley sys-
tems for AB⊗ exhibit complementary features. The bottom-up approach of
the CYK system allows a straightforward implementation of the cancellation
rules. In this approach, however, the product rule should be constrained in
order to generate only the products which are required for the success of the
computation. With regard to the Earley approach, top-down prediction offers
a simple and natural way of encoding the product rule. On the other hand, it
renders the classical reduction schemes

a a\b → b and b/a a → b

a sort of expanding patterns (see also Chapter 5): the succedent, which is
shorter, is given in the premise and the antecedent, which is longer, is returned
in the conclusion. Thus for the Earley system, we shall constrain the application
of the slash prediction.

The complementarity of these features suggests the possibility of integrating
the two approaches into a new one. This is, in fact, what I do in the final
part of the chapter. Earley and CYK for AB⊗ will be ‘merged’ into a new
parsing system incorporating all and only their pleasant properties, namely
two oriented variants of completion for the slashes, as in the CYK system, and
a top-down prediction for the product, as in the Earley system.

Chapter 4 is dedicated to the implementation and complexity analysis of
these parsing systems.

3.1 Problems

In Chapter 2, we discussed what it means for a grammar to generate a sequent
and a terminal string. However, we did no specify any method for the process
of generation. For example, we observed in respect to Example 2.5 on page 12
that several other deductions were available. Let us consider another example.

According to the purely declarative notion of derivation given in Defini-
tion 2.11 on page 9, there are six possible ways of obtaining the sentence John
whistles in grammar G3 from Example 2.3.

Example 3.1. Derivations of John whistles in grammar G3

1. [John whistles, Np whistles, NP whistles, NP IV, NP VP, S]

2. [John whistles, Np whistles, Np IV, NP IV, NP VP, S]

3. [John whistles, John IV, Np IV, NP IV, NP VP, S]

order compilation, which render it rather complicated. Secondly, it is designed for a product-
free system.

Deductive Parsers 45

4. [John whistles, Np whistles, Np IV, Np VP, NP VP, S]

5. [John whistles, John IV, Np IV, Np VP, NP VP, S]

6. [John whistles, John IV, John VP, Np VP, NP VP, S]

All these derivations differ only in the order in which the productions of
the grammar are applied. We can see that all encode the following structural
description:

S

�� HH

NP

Np

John

VP

IV

whistles

We used the term spurious ambiguity for the situation arising when distinct
derivations encode the same structural description. Clearly, if six different
derivations are available for such a simple sentence, spurious ambiguity is a
serious problem which may affect drastically the size of the search space.

There are several (suboptimal) ways of reducing the degree of spurious am-
biguity in automatic proof search. We present some options in this introductory
section, and will examine more sophisticated methods in the rest of the chapter.

One may observe that the redundancy in Example 3.1 is determined also by
the shape of the productions of the grammar. We could, for instance, rephrase
grammar G3 into the equivalent grammar G ′

3 below.

Example 3.2. Grammar G ′
3:

NP VP → S

John | Mary | Det N → NP

whistles | TV NP → VP

loves → TV

every | a → Det

man | woman → N

Then, grammar G ′
3 only admits two equivalent derivations for the sentence

John whistles.

1. [John whistles, NP whistles, NP VP, S]

46 3.1. Problems

2. [John whistles, John VP, NP VP, S]

A second observation has to do with the fact that in building a derivation for
a sentence we can chose a strategy for applying the productions of the grammar.
For example, for each rule X1 . . .Xn → X we may chose to always expand first
either the leftmost symbol X1 or the rightmost symbol Xn. Such choice has the
advantage of further reducing the number of possible derivations. For instance,
continuing with the previous example, we have the following two cases.

Rightmost derivation:

[John whistles, NP whistles, NP VP, S]

Leftmost derivation:

[John whistles, John VP, NP VP, S]

While the choice of one of these recognition strategies may solve part of the
problem of multiple redundant derivations, we can easily see that other prob-
lems may arise. For instance, a leftmost (resp. rightmost) reduction strategy
may enter an infinite loop if the input grammar contains left (resp. right) re-
cursive productions, of the form Y X1 . . .Xn → Y (resp. X1 . . .Xn Y → Y). An
example of right recursive rule in English is the following:

A N → N

where A is the category of adjectives. Such a rule generates, for instance,
happy1 . . . happyn man.

We will see in the next sections that these problems have been solved in very
elegant and simple ways for context-free grammars and that these solutions can
be extended to AB⊗ grammars.

As we said at the beginning of the chapter, one could chose to translate an
AB⊗ grammar into an equivalent CF grammar according to the procedure in
[Bar-Hillel et al., 1964] (and extending it to the product case), and to apply
the known algorithms to the resulting grammar, as [Finkel and Tellier, 1996]
do. Consider the following example.

Example 3.3. Let G be a first-order AB⊗ grammar. The generation of the
CF grammar G ′ such that Lt(G) = Lt(G

′) involves replacing each subformula
x of formulas in the lexicon of G with a new atomic formula of G ′, which we
denote Nx. Thus G ′ contains the lexical productions

{ w → Nx | w → x ∈ Lex }

and moreover all the productions of the form

Na Nb → Na⊗b

Na Na\b → Nb

Nb/a Na → Nb

Deductive Parsers 47

such that a⊗ b, a\b and b/a are subformulas of formulas in the lexicon of G.

Clearly, the number of productions of the grammar G ′ depends on the
number of assignments in the lexicon of G and on the length of the formulas
in the lexicon. Since each formula of length n has 2n − 1 subformulas, we can
have an idea of how bigger G ′ can be. Furthermore, if G is not a first-order
grammar, first-order conversion will also increase the size of the grammar. On
the other hand, we know that the complexity of the CF parsing algorithms is
affected by the size of the grammar. Thus one may suspect that better results
could be obtained by working directly with AB⊗ grammars. We will see that
this is indeed the case2.

3.2 Deductive parsers

In Chapter 2, we presented context-free and categorial grammars as deductive
systems. Parsers can also be seen as deductive systems . This is the perspective
proper to the deductive parsing formalism of [Shieber et al., 1995]: parsing a
sentence amounts to the construction of a deduction.

Parsers are deductive systems whose items (the kinds of objects that replace
the sequents of the deductive systems seen in Chapter 2) encode, at least, the
portion of the input string that has been recognized and its syntactic category.
The recognized portion of the input is identified by two position indices. For
instance, consider a context-free grammar G and a production of G of the form

A B → C

Such a production can be read as asserting that if wi+1 . . .wk ⇒∗ A and
wk+1 . . .wj ⇒∗ B, then wi+1 . . .wkwk+1 . . .wj ⇒∗ C. In the deductive pars-
ing formalism (or in the definite clause grammar formalism, see [Pereira and
Shieber, 1987]) this can be expressed as

∀i, j∃k, i < k < j such that (i,A,k) (k,B, j) → (i,C, j)

A grammatical derivation succeeds if the entire input is analyzed as being a
sentence, that is if w1 . . .wn ⇒∗ S. In turn, a parsing deduction succeeds if
the item (0,S,n) can be generated by the parsing system.

The deductive perspective on parsing plays an important role also in the
parsing schemata theory of Sikkel [1993, 1998]. In fact, the formulation of a
parser as a deductive system offers a high level of abstraction over implementa-
tional details which allows to easily prove formal properties of the parser, such
as its correctness.

We introduce here the basic notions which we will develop in the following
sections.

2In fact we will see in the Chapter 4, that while for CF grammars we have a complexity
of O(|G|n3), where |G| is the size of the grammar, for AB⊗ grammars we have O(n3). As
G is often much bigger than n, this is an important improvement.

48 3.3. Bottom-up parsers

Definition 3.1.

A parsing system D is a triple 〈I,A,R〉 where I is the domain of items, A is
the set of axioms of D and R is a set of inference rules whose premises and
conclusion are items.

A deduction in a parsing system D is defined in the usual way.

We say that a parsing system D generates an item η, denoted η ∈ D, if there
is a deduction of η in D.

In the following sections, we will see the most famous and efficient general
parsing systems for context-free grammars and extend them to AB⊗ grammars.
As we said before, these are the CYK parser and the Earley parser.

3.3 Bottom-up parsers

The CYK algorithm owes its name to the names of its inventors. The algorithm
was developed in the early 1960s by John Cocke for parsing CF grammars. Later
[Younger, 1967] showed that this algorithm recognizes a string of length n in
O(n3) operations. A similar algorithm had been proposed independently in
[Kasami, 1965].

Let us consider the deductive formulation of the CYK parser for CF gram-
mars. The system CFCYK, in its simplest form, works with Chomsky normal
form CF grammars without ε-productions. We represent such a grammar as
G = 〈Vt,S,F,Lex,P〉, where Lex ⊆ Vt × F is the lexicon of the grammar and
P ⊆ (FF) × F is the set of its binary productions. The system can easily be
generalized to grammars which are not in CNF.

Items are triples (i,A, j) such that A ∈ F and 0 6 i < j 6 n, where n is
the length of the input string. Such an item has to be interpreted as asserting
that wi+1 . . .wj ⇒∗ A in the reference grammar.

Definition 3.2. Let a CNF CF grammar G = 〈Vt,S,F,Lex,P〉 and a string
w1 . . .wn be given. The parsing system CFCYK = 〈I,A,R〉 is defined in Fig-
ure 3.1 on the next page.

As we said, the CYK system works bottom-up, that is it builds deductions
from premises to conclusion. Observe that two instances of the cut rule are
implicitly encoded by the only rule in R. In this way, the following two distinct
deductions are identified.

Example 3.4. Decoding of the inference rule of CFCYK.

Γ → A
∆ → B A B → C

A ∆ → C
Γ∆ → C

∆ → B
Γ → A A B → C

Γ B → C
Γ∆ → C

Let us consider now an example deduction.

Deductive Parsers 49

I = { (i,A, j) | A ∈ F, 0 6 i < j 6 n }

A = { (i − 1,A, i) | wi → A ∈ Lex }

R =

{
(i,A,k) (k,B, j)

(i,C, j)
if A B → C ∈ P

Figure 3.1: The parsing system CFCYK.

Example 3.5. Deduction in CFCYK.

Inputs: grammar G ′
3 and string John loves a woman

John
(0,NP, 1)

loves
(1, TV, 2)

a
(2,Det, 3)

woman
(3,N, 4)

(2,NP, 4)

(1,VP, 4)

(0,S, 4)

Correctness of the system can be stated as follows.

Proposition 3.1. Let G be a CF grammar in CNF and without ε-productions.
Then, the system CFCYK for G recognizes items (i,C, j) such that `G wi+1 . . .
wj → C.

In particular, a string w0 . . .wn is grammatical if (0,S,n) is the conclusion
of a deduction in CFCYK. We omit the proof of this proposition because we
will prove later correctness of the CYK system for AB⊗ grammars and the two
proofs are very similar.

3.3.1 AB grammars

From CFCYK to the CYK parsing system for AB grammars it is a short step.
We define the parsing system ABCYK. As in the case of CFCYK, the lexicon

of the input grammar should be free from axioms of the form ε → a, which we
call ε-assignments, but as the rules of the AB system are only binary, no other
restriction is imposed.

Definition 3.3. Let an AB grammar G = 〈Vt,S,Lex,AB〉 without ε-assign-
ments and a string w1 . . .wn be given. The parsing system ABCYK = 〈I,A,R〉
is defined in Figure 3.2 on the following page.

50 3.3. Bottom-up parsers

I = { (i,a, j) | a ∈ F, 0 6 i < j 6 n }

A = { (i − 1,a, i) | wi → a ∈ Lex }

R =

(i, c/a,k) (k,a, j)

(i, c, j)

(i,a,k) (k,a\c, j)
(i, c, j)

Figure 3.2: The parsing system ABCYK.

As in the case of CFCYK, one can easily prove that the item (i, c, j) is
generated by ABCYK if and only if `G wi+1 . . .wj → c, where G is the AB

grammar of reference. In the next section, we prove this statement for the
system AB⊗

CYK.
Observe that the addition to the rule package of ABCYK of the following

rules gives the parsing system for AAB grammars, which we call AABCYK.

(i, c/a,k) (k,a/b, j)
(i, c/b, j)

(i,b\a,k) (k,a\c, j)
(i,b\c, j)

[Shieber et al., 1995] presents a parsing system for CCG, which is an extension
of AABCYK.

3.3.2 Product rules

In the previous section, we considered product-free Ajdukiewicz–Bar-Hillel cat-
egorial system. However, it is possible to extend the CYK deductive systems
to the AB calculus with product, AB⊗. The product rule,

Γ → a ∆ → b

(Γ ,∆) → a⊗ b

can be straightforwardly transformed in a correct parsing rule. For example,
the following rule could be added to ABCYK and produce a correct parsing
system AB⊗

CYK for grammars based on AB⊗.

(3.1)
(i,a,k) (k,b, j)

(i,a⊗ b, j)

Deductive Parsers 51

However, as it is, this rule is applicable to every two adjacent items and there-
fore it generates all possible product formulas having as immediate subformu-
las the formulas occurring in the premises. For example, given items (i,a, j),
(j,b,k) and (k, c, l), we have both the following deductions

(i,a, j) (j,b,k)

(i,a⊗ b,k) (k, c, l)
(i, (a⊗ b)⊗ c, l)

(i,a, j)
(j,b,k) (k, c, l)

(j,b⊗ c, l)
(i,a⊗ (b⊗ c), l)

Thus if we adopt rule 3.1, the parsing system for AB⊗ grammars will generate
an exponential number of items3. Clearly, only a small subset of all the product
items that can be generated by rule 3.1 are in fact needed for the deduction.
Hence, we shall constrain rule 3.1 in such a way that an item of the form
(i,a ⊗ b,k) is generated by rule 3.1 only if the formula a ⊗ b is needed in
the deduction process. As AB⊗ grammars enjoy the subformula property , we
can restrict the application of rule 3.1 to generate only items whose formulas
belong to the set of subformulas of the axioms. Observe also that the problem
of limiting the search space to subformulas of the input sequent does not arise
for ABCYK. In this case the conclusion of each inference rule is a subformula
of the premises.

In fact, not all subformulas of the axiom items are required: we are inter-
ested only in the product formulas that may have to be generated by rule 3.1.
We define the following set of formulas.

Definition 3.4. We define two functions, δ+, δ− :: F → {F}, returning the set
of product subformulas required for the subformula test for the product parsing
rule (we omit the symmetric cases).

δ+(a⊗ b) = {a⊗ b} ∪ δ+(a) ∪ δ+(b)

δ+() = ∅

δ−(c/x) =

{
δ+(x) ∪ δ−(c) if x ≡ a⊗ b

δ−(c) otherwise.
δ−() = ∅

We can now formulate the parsing system AB⊗
CYK for AB grammars with

product.

Definition 3.5. Let an AB⊗ grammar G = 〈Vt, s,Lex,AB⊗〉 without ε-
assignments and a string w1 . . .wn be given.

3More precisely, for a string w1 . . .wn such that each wi is assigned the category ai,
and only ai, in the lexicon, the string w1 . . .wn can be assigned Cn categories by means of
the product rule, where Cn is the Catalan number of n defined by the recurrence:

C0 = 1

Cn+1 = C0Cn + C1Cn−1 + . . . + Cn−1C1 + CnC0

52 3.3. Bottom-up parsers

A set of formulas Σ is generated as follows:

Σ = { b | wi → a ∈ Lex, 1 6 i 6 n, b ∈ δ−(a) }

In Figure 3.3, we define the parsing system AB⊗
CYK = 〈I,A,R〉.

I = { (i,a, j) | a ∈ F, 0 6 i < j 6 n }

A = { (i − 1,a, i) | wi → a ∈ Lex }

R =

(i, c/a,k) (k,a, j)
(i, c, j)

(i,a,k) (k,a\c, j)
(i, c, j)

(i,a,k) (k,b, j)
(i,a⊗ b, j)

if a⊗ b ∈ Σ

Figure 3.3: The parsing system AB⊗
CYK.

Observe that the set Σ contains all and only the formulas of the form a⊗b

whose generation may require an instance of the product parsing rule. As
we discussed before, without this restriction the AB⊗

CYK parsing system would
generate a number of items greater than the Catalan number of the length of
the input string.

Let us look at an example of deduction in AB⊗
CYK.

Example 3.6. Deduction in AB⊗
CYK:

We consider the AB⊗ grammar for propositional logic, PL, whose lexicon con-
sists of the following entries:

pi → s 0 6 i

∧ → (s\s)/s

∨ → (s\s)/s

¬ → s/s

[→ s/(s⊗ c)

] → c

Input string: ¬[p1 ∨ p2].

Deductive Parsers 53

We calculate Σ = {s⊗ c}.

¬

(0, s/s, 1)

[

(1, s/(s⊗ c), 2)

p1

(2, s, 3)

∨

(3, (s\s)/s, 4)

p2

(4, s, 5)

(3, s\s, 5)

(2, s, 5)

]

(5, c, 6)

(2, s⊗ c, 6)

(1, s, 6)

(0, s, 6)

Below, we prove the correctness of AB⊗
CYK.

Correctness of AB⊗
CYK

Proving correctness of a parsing system requires proving its soundness and
completeness. Once a definition of the items generated by a parsing system D

is given, soundness amounts to the proof that every item deduced according
to the rules of D satisfies the definition. Instead, completeness requires that
every item that conforms to the definition is generated through application of
the rules of D. Usually, the proof of soundness is easier, as it simply involves
looking at the rules. [Sikkel, 1998] provides a general method for proving
correctness of a parsing system. Such method results, in fact, in an abstraction
of the traditional proof methods that can be found in [Aho and Ullman, 1972]
and [Harrison, 1978], an abstraction which is made possible by the deductive
perspective on parsing.

Let us introduce some formal definitions.

Definition 3.6. Let D = 〈I,A,R〉 be a parsing system.

The set of valid items V(D) is the set of items which can be deduced in any
number of steps from hypotheses in A together with, possibly, some further
items4.

The set of viable items, W ⊆ I, is the set of items that should be recognized by
a parsing system D.

Correctness of a parsing system is defined as follows.

Definition 3.7. A parsing system D is correct, if it is sound and complete.
Formally, let W be the set of viable items of D, then:

a) Soundness: V(D) ⊆ W.

b) Completeness: W ⊆ V(D).

4For instance, the initialization items used in top-down predictive parsing as we will see
in Section 3.4.2.

54 3.3. Bottom-up parsers

c) Correctness: W = V(D).

We will use lowercase Greek letters as variables over items. The proof of
soundness amounts to the proof the following statement.

Proposition 3.2. Let D be a parsing system and W ⊆ I.

If for all inference rules in D,

η1 . . . ηn

ξ

with ηi ∈ A ∪W, 1 6 i 6 n, it holds that ξ ∈ W, then V(D) ⊆ W.

For the specific case of AB⊗
CYK, we define the set of viable items as follows.

Definition 3.8. For an AB⊗
CYK system, for an AB⊗ grammar G and a string

w1 . . .wn, we define the set of viable items W as follows

W = { (i,a, j) | wi+1 . . .wj ⇒∗ a }

We proceed to prove the soundness of AB⊗
CYK.

Proposition 3.3. Soundess of AB⊗
CYK.

V(AB⊗
CYK) ⊆ W

Proof.

If ξ ∈ A, then ξ = (i − 1,a, i) and wi → a ∈ Lex. Thus ξ ∈ W.

If ξ is deduced by cancellation from items (i,a/b,k) and (k,b, j), then ξ =
(i,a, j). By IH (i,a/b,k) ∈ W and (k,b, j) ∈ W. Thus wi+1 . . .wk ⇒∗ a/b

and wk+1 . . .wj ⇒∗ b. We conclude that wi+1 . . .wkwk+1 . . .wj ⇒∗ a. Hence
ξ ∈ W.

If ξ is deduced by product rule from items (i,a,k) and (k,b, j), then ξ =
(i,a ⊗ b, j). By IH we have wi+1 . . .wk ⇒∗ a and wk+1 . . .wj ⇒∗ b. We
conclude that wi+1 . . .wkwk+1 . . .wj ⇒∗ a⊗ b. Hence ξ ∈ W.

In order to prove completeness of a parsing system, we follow [Sikkel, 1998]
in defining a deduction length function, dfl for short, on the set of viable items
W. The dfl is a measure of the length of the deduction of an item based on the
length of the corresponding grammatical derivation. For every item η generated
by the parsing system, its dfl should be bigger than that of its premises. This
allows to prove completeness by induction on the dfl. A similar notion is the
rank used in [Aho and Ullman, 1972].

Definition 3.9. Deduction length function, dfl.

Let D be a parsing system and W ⊆ I a set of items. A function d :: (A∪W) →
Int is a deduction length function iff

Deductive Parsers 55

1. d(η) = 0, if η ∈ A

2. for each ξ ∈ W there is an inference rule in D

η1 . . . ηn

ξ

such that {η1, . . . ,ηn} ⊆ W and d(ηi) < d(ξ) for 0 6 i 6 n.

Proposition 3.4. Let D be a parsing system and W ⊆ I.

If a dfl d exists, then W ⊆ V(D).

Completeness of AB⊗
CYK is proved as follows. Given a dfl d, from the

assumption that items η, with d(η) < m, are valid, it has to be proven that all
ξ with d(ξ) = m are valid.

Proposition 3.5. Completeness of AB⊗
CYK.

W ⊆ V(AB⊗
CYK)

Proof. One defines a function d such that

d(i − 1,a, i) = 0
d(i,a, j) = j − i

Clearly, d is a deduction length function.

In Section 4.3, I will give the tabular implementation of the CYK algorithm
for CF and AB⊗ grammars.

3.4 Earley style parsing

In the previous section, we examined the CYK deductive system for CF gram-
mars and AB grammars with and without product. The CYK system tries to
construct a deduction of the input string starting from the preterminal cate-
gories, assigned to the words in the string. A category is assigned to a larger
portion of the input on the basis of the categories assigned to the premises and
of some rule of the grammar. It is called bottom-up because it proceeds from
the premises to the conclusion.

Although very simple and elegant, the CYK system has some limitations.
Firstly, in the case of CF grammars, we have to assume that the input grammar
is in Chomsky normal form5. Secondly, the input grammar should not contain
ε-productions.

The first limitation does not affect Ajdukiewicz–Bar-Hillel categorial gram-
mars, as these grammars have only two-premise rules. Instead, the availability

5Although, as we said, there are also generalized variants of the CYK system.

56 3.4. Earley style parsing

of the empty string may simplify notably the formulation of the grammar in
certain cases, both in the CF and in the categorial setting.

In this section, we discuss another kind of deductive parser which is not
affected by the previous limitations. It is called Earley parser, from the name
of its inventor Jay Earley. It works with any CF grammar, and it is faster than
the CYK algorithm, at least if the underlying grammar is not ambiguous. The
parser works partly top-down (in the so called predictive phase) and partly
bottom-up (in the completion phase). Nonetheless, it is often considered a top-
down parser as it tries to construct a derivation from the root symbol towards
the leaves.

While the CYK parser had already been applied to various kinds of cate-
gorial calculi, most notably to CCG, our formulation of the Earley parser for
AB⊗ grammars is new.

3.4.1 Earley system for CF

The Earley algorithm was presented in Jay Earley’s doctoral dissertation [Ear-
ley, 1968], see also [Earley, 1970]. As we said before it works with any CF

grammar and in some case it is more efficient than the CYK parser.
Earley items are triples (i,∆•Λ → A, j) such that ∆Λ → A is a production

of the grammar, 0 6 i 6 j 6 n, where n is the length of the input string, and •
is a special symbol not occurring in the grammar. Such items are interpreted as
asserting that wi+1 . . .wj ⇒∗ ∆, and w1 . . .wi A Γ ⇒∗ S for some Γ ∈ (Vt∪F)∗.

Definition 3.10. Earley’s deductive parser CFEarley.

Let a CF grammar G = 〈Vt,S,F,P〉 and a string w1 . . .wn be given.

The parsing system CFEarley is the triple 〈I,A,R〉 defined in Figure 3.4 on the
next page.

The system CFEarley is known to be correct. A simple proof can be found
in [Sikkel, 1998]. The set of viable items W is defined as follows:

W = { (i,∆ •Λ → A, j) | wi+1 . . .wj ⇒∗ ∆,
w1 . . .wi A Γ ⇒∗ S for some Γ ∈ (Vt ∪ F)∗ }

Let us examine an example deduction in CFEarley.

Example 3.7. Deduction of [[]] in grammar [S]S | ε → S.

Items generated:

1. (0, •[S]S → S, 0): Init

2. (0, • → S, 0): Init

3. (0, [•S]S → S, 1): Scan 1

4. (1, •[S]S → S, 1): Predict 3

Deductive Parsers 57

I = { (i, Γ • ∆ → C, j) | Γ∆ → C ∈ P, 0 6 i 6 j 6 n }

A = { (i − 1,wi, i) | 1 6 i 6 n }

R =

(0, •Γ → S, 0) for all Γ → S ∈ P Init

(i,∆ •wΓ → C, j) (j,w, j + 1)

(i,∆ w • Γ → C, j + 1) Scan

(i,∆ •AΓ → C, j)
(j, •Λ → A, j)

Λ → A ∈ P
Predict

(k,Λ• → A, j) (i,∆ •AΓ → C,k)

(i,∆ A • Γ → C, j) Complete

Figure 3.4: The parsing system CFEarley.

5. (0, [S•]S → S, 1): Complete 2-3

6. (1, [•S]S → S, 2): Scan 4

7. (2, •[S]S → S, 2): Predict 6

8. (2, • → S, 2): Predict 6

9. (1, [S•]S → S, 2): Complete 8-6

10. (1, [S] • S → S, 3): Scan 9

11. (3, •[S]S → S, 3): Predict 10

12. (3, • → S, 3): Predict 10

13. (1, [S]S• → S, 3): Complete 12-10

14. (0, [S•]S → S, 3): Complete 13-3

15. (0, [S] • S → S, 4): Scan 14

16. (4, •[S]S → S, 4): Predict 15

17. (4, • → S, 4): Predict 15

58 3.4. Earley style parsing

18. (0, [S]S• → S, 4): Complete 17-15

The deduction can be shown as a tree, if we assume that predicted items are
leaves of the proof tree (the place of hypotheses), although they are in fact
derived. We present part of the previous deduction in tree format:

(4, • → S, 4)

....
(1, [S]S• → S, 3)

(0, •[S]S → S, 0) (0, [, 1)

(0, [•S]S → S, 1)

(0, [S•]S → S, 3) (3,], 4)

(0, [S] • S → S, 4)

(0, [S]S• → S, 4)

Soundness of CFEarley is trivial. In order to prove completeness, one can
define a deduction length function d as

d(i,∆ •Λ → A, j) = min{ δ + 2γ + 2µ + j | wi+1 . . .wj ⇒γ ∆,
Γ A Γ ′ ⇒δ S,
w1 . . .wi ⇒µ Γ }

One should check that d satisfies condition 2 of Definition 3.9 for every item
in W. We refer to [Sikkel, 1998] for the details of the proof. In the next
section, we will see the Earley deductive system for AB⊗ grammars and prove
its correctness.

3.4.2 The Earley parser for AB⊗ grammars

Consider the following formulation of the AB calculus with product.

Definition 3.11. Let AB
⊗

be the deductive system 〈F,AX,R〉, where

AX contains, for all a,b ∈ F:

- Identity axioms:
a → a

- Slash axioms:
a a\b → b b/a a → b

- Product axioms:
a b → a⊗ b

R consists of the cut rule:
∆ → a Γ [a] → c

Γ [∆] → c

An AB grammar with product can be constructed on top of AB
⊗

in the
usual way.

Deductive Parsers 59

Proposition 3.6. [Kandulski, 1988]: The system AB⊗ presented in Defini-
tion 2.24 on page 21 and AB

⊗
are equivalent.

The slash and product axioms of AB
⊗

will be applied in the Earley de-
ductive system as different instances of the prediction rule. In the case of CF

grammars, prediction expands a non-terminal X in accordance with the produc-
tions whose succedent is X. In case of AB

⊗
, the system will expand a formula

a as the list of formulas b b\a (and/or a/b b), such that b\a (and/or a/b)
is a subformula of some lexical assumption. Hence for slash prediction we will
have to keep note of the slash subformulas taking part in the computation.

Definition 3.12. We define a function, δ∗ :: F → {F}, returning the set of slash
subformulas needed for expanding the slash axioms in the parsing system.

δ∗(a/b) = {a/b} ∪ δ∗(a)

δ∗(b\a) = {b\a} ∪ δ∗(a)

δ∗() = ∅

We present the Earley deductive parser for AB⊗ grammars.

Definition 3.13. The parsing system AB⊗
Earley.

Let an AB
⊗

grammar G = 〈Vt, s,Lex,AB
⊗〉 and a string w1 . . .wn be given.

Let S ′ be a symbol that does not occur in any lexical entry of G.

A set of formulas Σ is constructed as follows:

Σ = { b | wi → a ∈ Lex, b ∈ δ∗(a) }

∪
{ b | ε → a ∈ Lex, b ∈ δ∗(a) }

Figure 3.5 on the next page presents the Earley deductive parser AB⊗
Earley.

Other formulations of the system AB⊗
Earley are possible. We chose this

slightly verbose one as it parallels the Earley system for CF grammars and in
Definition 3.16 we propose a simplified version of AB⊗

Earley . The Init rule
has only an auxiliary status in that it allows us to avoid to state explicitly
prediction for the root symbol s, saving us some space. It makes use of a new
symbol S ′ that does not occur elsewhere in the grammar. The scanning rule
could indeed be simplified by contraction with the lexical instance of prediction
(see Remark 3.9 at the end of the section). However, it amounts to the same
as the scanning rule of CFEarley. The completion rule is exactly the same as
the corresponding CF rule.

The prediction rule of AB⊗
Earley is new. In the case of CFEarley, prediction

is the following rule

(i, ∆ •A Λ → C, j)

(j, • Γ → A, j)
Γ → A ∈ AX

60 3.4. Earley style parsing

I = { (i, Γ • ∆ → c, j) | Γ∆ → c ∈ (AX ∪ Lex), 0 6 i 6 j 6 n }

A = { (i − 1,w, i) | w ≡ wi, 1 6 i 6 n }

R =

(0, •s → S ′, 0) Init

(j, •w → c, j) (j,w, j + 1)

(j,w• → c, j + 1) Scanning

(i, ∆ • aΛ → c, j)

(j, •w → a, j)
w → a ∈ Lex

(i, ∆ • bΛ → c, j)

(j, •a a\b → b, j)
a\b ∈ Σ

(i, ∆ • bΛ → c, j)

(j, •b/a a → b, j)
b/a ∈ Σ

(i, ∆ • a⊗ b Λ → c, j)

(j, •a b → a⊗ b, j)

Prediction

(k,Λ• → a, j) (i,∆ • aΓ → c,k)

(i,∆ a • Γ → c, j) Completion

Figure 3.5: The system AB⊗
Earley.

In the case of AB⊗
Earley, we have three kinds of prediction, which we call lexical,

slash and product prediction in accordance with the three kinds of axioms of
the AB

⊗
system which these rules rely upon.

- Lexical prediction,

(i, ∆ • aΛ → c, j)

(j, •w → a, j)
w → a ∈ Lex

generates a new item (the conclusion), if the next symbol to be parsed is
a lexical category. Observe that w, in the conclusion, can be the empty
string.

Deductive Parsers 61

- Product prediction
(i, ∆ • a⊗ b Λ → c, j)

(j, •a b → a⊗ b, j)

applies the product axiom

a b → a⊗ b

The rule states that if the next symbol to be parsed is of the form a⊗ b,
then we can start a new subprocess which tries to recognize the two
immediate subformulas a and b of the product.

- Slash prediction (we consider only one variant),

(i, ∆ • bΛ → c, j)

(j, •a a\b → b, j)
a\b ∈ Σ

is triggered by a slash subformula of the form a\b in the set Σ. If the
‘numerator’ of a formula in Σ matches the next symbol to be parsed in
the input item, then a new process starts, trying to recognize the symbol
as the output category of the slash axiom

a a\b → b

In comparison with AB⊗
CYK, one can observe that the product axioms is applied

in AB⊗
Earley in a completely natural way. On the other hand, the reduction

schemes a a\b → b and b/a a → b of the AB calculus, become expanding from
the top-down perspective: the output formula b is what is given, while the lists
of formulas a a\b or b/a a represent the new (though predictable) material.

We give now an example of application of the parsing system.

Example 3.8.

Input string: aabb.

Input grammar:
a → s/(s⊗ c)
b → c

ε → s

Σ = {s/(s⊗ c)}

Items generated (we restrict the set to those needed for a successful deduction):

1. (0, •s → S ′, 0): Init

2. (0, •s/(s⊗ c) s⊗ c → s, 0): Predict 1

3. (0, •a → s/(s⊗ c), 0): Predict 2

4. (0,a• → s/(s⊗ c), 1): Scan 3

62 3.4. Earley style parsing

5. (0, s/(s⊗ c) • s⊗ c → s, 1): Complete 4-2

6. (1, •s c → s⊗ c, 1): Predict 5

7. (1, •s/(s⊗ c) s⊗ c → s, 1): Predict 6

8. (1, •a → s/(s⊗ c), 1): Predict 7

9. (1,a• → s/(s⊗ c), 2): Scan 8

10. (1, s/(s⊗ c) • s⊗ c → s, 2): Complete 7-9

11. (2, •s c → s⊗ c, 2): Predict 10

12. (2, • → s, 2): Predict 11

13. (2, s • c → s⊗ c, 2): Complete 11-12

14. (2, •b → c, 2): Predict 13

15. (2,b• → c, 3): Scan 14

16. (2, s c• → s⊗ c, 3): Complete 15-13

17. (1, s/(s⊗ c) s⊗ c• → s, 3): Complete 16-10

18. (1, s • c → s⊗ c, 3): Complete 17-6

19. (3, •b → c, 3): Predict 18

20. (3,b• → c, 4): Scan 19

21. (1, s c• → s⊗ c, 4): Complete 20-18

22. (0, s/(s⊗ c) s⊗ c• → s, 4): Complete 21-5

23. (0, s• → S ′, 4): Complete 22-1

Correctness of AB⊗
Earley

In this section, we state the correctness of AB⊗
Earley. However, we omit some

of the details of the proofs and refer the reader to the proof of correctness of the
system AB⊗

Mix, in the next section, that can be easily adapted to the present
case.

Definition 3.14. Viable items of the system AB⊗
Earley, for an AB⊗ grammar

G and a string w1 . . .wn.

W = { (i,∆ •Λ → c, j) | wi+1 . . .wj ⇒∗ ∆,
w1 . . .wi c Γ ⇒∗ s for some Γ ∈ (Vt ∪ F)∗ }

Deductive Parsers 63

Proposition 3.7. Soundness of AB⊗
Earley.

V(AB⊗
Earley) ⊆ W

Proof. Induction on the AB⊗
Earley deduction.

In order to prove completeness of AB⊗
Earley we define the following deduc-

tion length function.

Definition 3.15. We define a dfl d :: (A ∪W) → Int by

d(i − 1,w, i) = 0
d(i,∆ • Γ → a, j) = min{ π + 2µ + 2ζ + j | wi+1 . . .wj ⇒µ ∆,

Ξ aΛ ⇒π s,
w1 . . .wi ⇒ζ Ξ }

Proposition 3.8. System AB⊗
Earley is complete.

W ⊆ V(AB⊗
Earley)

Proof. As in the case of CFEarley, one can easily check that d satisfies condition
2 of Definition 3.9 for every item in W. We consider only a few cases, as the
proof is very similar to the corresponding proof for CFEarley and to the one
for AB⊗

Mix in the next section.

1. Consider ξ = (i,∆ b • Γ → a, j). Let wi+1 . . .wm ⇒µ ∆, ΞaΛ ⇒π s and
w1 . . .wi ⇒ζ Ξ with µ,π and ζ minimal. Then η = (i,∆ • b Γ → a,m) ∈
W and

d(η) = π + 2µ + 2ζ + m

Let wm+1 . . .wj ⇒µ′
∆ ′ with µ ′ minimal and ∆ ′ → b ∈ AX. Then

θ = (m,∆ ′ → b, j) ∈ W. For θ, we have Ξ∆ b ΓΛ ⇒ ΞaΛ ⇒π s and
w1 . . .wm ⇒ζ+µ Ξ∆. Thus,

d(θ) = (π + 1) + 2µ ′ + 2(µ + ζ) + j

For ξ, we have wi+1 . . .wj ⇒µ+µ′
∆∆ ′ ⇒ ∆b.

d(ξ) = π + 2(µ + µ ′ + 1) + 2ζ + j

Hence d(ξ) > d(θ) + 1 and d(ξ) > d(η) + (j − m + 2)

2. Consider the case of prediction of ξ = (j, •a b → a⊗ b, j). Suppose that
∆ a ⊗ b Γ → c ∈ AX, that for some i, 0 6 i 6 j, wi+1 . . .wj ⇒µ ∆,
that Ξ cΛ ⇒π s and w1 . . .wi ⇒ζ Ξ with µ,π and ζ minimal. Then
η = (i,∆ • a⊗ b Γ → c, j) ∈ W, ξ is derived from η and

d(η) = π + 2µ + 2ζ + j

64 3.4. Earley style parsing

For ξ we have Ξ∆ a⊗b ΓΛ ⇒ Ξ cΛ ⇒π s and w1 . . .wj ⇒µ+ζ Ξ∆. Hence,

d(ξ) = (π + 1) + 2(µ + ζ) + j

We conclude d(ξ) 6 d(η) + 1.

3. The other cases of prediction are similar to the product prediction, while
scanning is trivial and init has only an auxiliary status. Thus we omit
the analysis of these rules.

As we said before, AB⊗
Earley can be simplified. In some cases, we can ‘col-

lapse’ several deduction steps into simpler inference rules. This process is called
contraction and it is a special kind of filtering according to the terminology of
[Sikkel and Nijholt, 1997]. In the following example, we show how we can con-
tract scanning and lexical prediction into simpler rules. Then we reformulate
AB⊗

Earley according to these new rules.

Example 3.9. Contraction of scanning and lexical prediction.

Consider the following deduction:

(i, ∆ • aΛ → c, j)

(j, •w → a, j)
w → a ∈ Lex

(j,w, j + 1)

(j, w• → a, j + 1) (i, ∆ • aΛ → c, j)

(i, ∆ a •Λ → c, j + 1)

As w 6= ε, the following inference rule will have the same effect of the previous
deduction.

(i, ∆ • aΛ → c, j)

(i, ∆a •Λ → c, j + 1)
wj+1 → a ∈ Lex

Instead, if ε ⇒+ a, we can use the following rule.

(i, ∆ • aΛ → c, j)

(i, ∆ a •Λ → c, j)
ε ⇒+ a

We may observe that if we replace scanning and lexical prediction in AB⊗
Earley

with these two new rules, we can reduce the number of items generated and of
the inference steps required to generate their conclusions. Instead, all transi-
tions ε ⇒+ a can be precomputed, as it is standard practice in the implemen-
tation of the Earley parser for CF grammars (see for example [Harrison, 1978]
and [Graham et al., 1980] and also Chapter 4).

We rephrase AB⊗
Earley using the rules in Example 3.9 and assuming as the

only axiom the previous Init rule.

Deductive Parsers 65

Definition 3.16. Contracted AB⊗
Earley.

Let Σ be constructed as follows:

Σ = { b | wi → a ∈ Lex, b ∈ δ∗(a) }

The contracted AB⊗
Earley is presented in Figure 3.6.

I = { (i, Γ • ∆ → c, j) | Γ∆ → c ∈ AX, 0 6 i 6 j 6 n }

A = { (0, •s → S ′, 0) }

R =

(i, ∆ • aΛ → c, j)

(i, ∆a •Λ → c, j + 1)
wj+1 → a ∈ Lex

(i, ∆ • aΛ → c, j)

(i, ∆ a •Λ → c, j)
ε ⇒+ a

Scanning

(i, ∆ • bΛ → c, j)

(j, •a a\b → b, j)
a\b ∈ Σ

(i, ∆ • bΛ → c, j)

(j, •b/a a → b, j)
b/a ∈ Σ

(i, ∆ • a⊗ b Λ → c, j)

(j, •a b → a⊗ b, j)

Prediction

(k,Λ• → a, j) (i,∆ • aΓ → c,k)

(i,∆ a • Γ → c, j) Completion

Figure 3.6: Contracted AB⊗
Earley.

We observe that this parsing system is different from the one presented in
Definition 3.13 on page 59 also under a few other minor respects. The set
Σ is smaller (or equal) as we assume that we know already what the empty
string rewrites to. Besides, items contain only sequents in AX, rather than in
AX ∪ Lex. Finally, the only axiom of the system is the Init rule of the system
in Definition 3.13.

66 3.5. Mixed regime

3.5 Mixed regime

In the previous sections, we considered the bottom-up and the top-down ap-
proaches to parsing. The parsing systems we presented for AB⊗ grammar were
simple adaptations of the well known CYK and Earley parsing systems for CF

grammars. However, the systems AB⊗
CYK and AB⊗

Earley both present some
inadequacy which is absent from their CF analogs. In both parsing systems,
in fact, the applications of some rules has to be licensed by a given set of for-
mulas. One may notice the complementarity of the Σ sets driving inferences
in the two systems: in AB⊗

CYK the slash elimination rules are ‘safe’, while the
product rule should be constrained in order to generate only products in Σ; in
AB⊗

Earley, on the contrary, the product rule is ‘safe’, while the slash prediction
rules should be applied on the basis of the set Σ. While this situation does not
affect significantly the complexity of an algorithm implementing these parsing
systems, since, in general, the Σ set is smaller than the grammar that triggers
the rules in the CF case, we can however try to find a better solution.

We shall emphasize that the CYK system is to a large extent adequate for
AB⊗ parsing since all the AB⊗ rules are binary. Instead, the Earley system has
the great advantage of handling the product formulas in a completely natural
way. Moreover, Earley can tackle grammars assigning syntactic categories to
the empty string.

In this section, I present a parsing system for AB⊗ grammars that includes
all and only the pleasant features of AB⊗

CYK and AB⊗
Earley. The system, which

we call AB⊗
Mix, needs no other information than that encoded in the logical

axioms. This means that no subformula test is required for either product or
slash formulas. This parser results from the fusion of AB⊗

CYK and AB⊗
Earley:

it works partly top-down and partly bottom-up and covers larger portions of
the input both from left to right and from right to left6.

Inferences of AB⊗
Mix are driven in conformity with the following axiomati-

zation of the AB⊗ calculus.

Definition 3.17. We call ÃB
⊗

the triple 〈F, ÃX
?
,R〉 where ÃX

?
= P ∪ ÃX

∗

and:

1. For all formulas a and b, P is the set containing all axioms of the form:

a b → a⊗ b

2. Let ÃX
0

contain the identity axioms, for all formulas a:

a → a

6This left-to-right and right-to-left interaction is original. Clearly, it is possible to rephrase
the Earley system to work from right to left, since the direction of the procedure is completely
arbitrary. On the other hand, the mixed regime that we are going to define seems to make
sense for categorial grammars, though not for CF grammars.

Deductive Parsers 67

3. ÃX
∗

is the closure of ÃX
0

under the following rules:

Γ → c/b

Γ b → c

Γ → a\c

a Γ → c

4. R consists of the cut rule:

Γ → a ∆[a] → c

∆[Γ] → c

Clearly, the system ÃB
⊗

is equivalent to AB⊗. An ÃB
⊗

grammar is a
grammar based on ÃB

⊗
.

We present the system AB⊗
Mix. This parsing system operates on two kinds

of items which we represent as

(i,∆ . Γ → a, j) and (i, Γ / ∆ → a, j)

An item of the form (i,∆ . Γ → a, j) asserts that ∆Γ → a ∈ ÃX
?
, that

wi+1 . . .wj ⇒∗ ∆, and that if, in particular, ∆Γ → a ∈ P, then for some
k, 0 6 k < i, c ∈ F and Λ ∈ F∗, ΞaΛ → c ∈ ÃX

?
and wk+1 . . .wi ⇒∗ Ξ. This

last condition represents the predictive component of the parser. It states that
each item (i,∆.Γ → a ′⊗a ′′, j) such that ∆Γ → a ′⊗a ′′ is a product axiom from
P (hence, ∆Γ ≡ a ′ a ′′) has been predicted from an item (k,Ξ.a ′⊗a ′′ Λ → c, i).

Dually, an item of the form (i, Γ / ∆ → a, j) asserts that Γ∆ → a ∈ ÃX
?
,

that wi+1 . . .wj ⇒∗ ∆ and that ΛaΞ → c ∈ ÃX
?

with wj+1 . . .wl ⇒∗ Ξ for
some l, j < l 6 n, Λ ∈ F∗ and c ∈ F.

Thus items of AB⊗
Mix can be seen as a refinement of both AB⊗

Earley items
and AB⊗

CYK items. Completion of wider portions of the input is dualized
(partly left-to-right and partly right-to-left) according to the directionality of
the slashes, as in AB⊗

CYK, while the sequent formulation of the items enables,
in the product case, the predictive behavior of AB⊗

Earley.
For simplicity, we write items of the form (i, / ∆ → a, j) and (i,∆ . → a, j)

as (i,∆ → a, j).

Definition 3.18. Let an ÃB
⊗

grammar G and a string w1 . . .wn be given.
The AB⊗

Mix deductive parser is the triple 〈I,A,R〉 presented in Figure 3.7 on
the next page.

Step by step description

Axioms of AB⊗
Mix are items of the form (i − 1,a → a, i) whose sequent recog-

nizes the word wi as an expression of category a, if the assignment wi → a is
in the lexicon of the input grammar. Let us spell out the meaning of the rules.

68 3.5. Mixed regime

I =

{ (i, Γ . ∆ → a, j) | Γ∆ → a ∈ ÃX
?
, 0 6 i 6 j 6 n }

∪

{ (i, Γ / ∆ → a, j) | Γ∆ → a ∈ ÃX
?
, 0 6 i 6 j 6 n }

A = { (i − 1,a → a, i) | wi → a ∈ Lex }

R =

(i,∆ . a Γ → c, j)

(i,∆ a . Γ → c, j)
ε ⇒+ a

(i, Γ a / ∆ → c, j)

(i, Γ / a ∆ → c, j)
ε ⇒+ a

 ε-Scanning

(i,∆ → c/b, j)

(i,∆ . b → c, j)

(i,∆ → b\c, j)

(i,b / ∆ → c, j)

}
Shifting

(i,∆ . a⊗ b Γ → c, j)

(j, . a b → a⊗ b, j)

(i, Γ a⊗ b / ∆ → c, j)

(i,a b / → a⊗ b, i)

}
⊗-Prediction

(i,∆ . a Γ → c,k) (k,Λ → a, j)
(i,∆ a . Γ → c, j)

(i,Λ → a,k) (k,∆ a / Γ → c, j)
(i,∆ / a Γ → c, j)

 Completion

Figure 3.7: The system AB⊗
Mix.

1. ε-scanning deals only with ε ⇒+ a reductions. If the next formula to
be parsed a can be reached from the empty string, then we can move a

among the recognized formulas (left of . or right of /).

2. When an antecedent structure is completely analyzed and the succedent
formula is a slash formula, shifting may apply. It places the ‘denominator’
of the succedent slash formula to the position of the next symbol to be
parsed, keeping track of the slash orientation in the orientation of the
triangle, expressing the direction of the parsing process.

Deductive Parsers 69

3. ⊗-prediction handles only the product formulas. The only difference with
respect to the product prediction of AB⊗

Earley is that instead of the single
•-marker, we have here the two oriented markers . and /. In the conclu-
sion, recognition proceeds according to the direction of the premise that
triggered the rule.

4. The completion rules are oriented variants of the completion rule of
AB⊗

Earley. The left-to-right variant is as in the Earley system. Let us
look at the right-to-left variant:

(i,Λ → a,k) (k,∆ a / Γ → c, j)
(i,∆ / a Γ → c, j)

The item (k,∆ a / Γ → c, j) states that the list of formulas Γ covers the
input between k+1 and j, and in order to proceed in the analysis, it should
recognize an expression of category a to its left. Then since (i,Λ → a,k)
represents a completed analysis of the portion of the input between i + 1
and k as being of category a, we conclude that the item (i,∆ /a Γ → c, j)
covers the analysis of the portion of input between i+1 and j. The other
case of completion is the symmetric dual.

Example 3.10. In Figure 3.8 on the following page, we show the deduction in
AB⊗

Mix of ¬[p ∧ q] according to grammar PL, from Example 3.6 on page 52.

Correctness of AB⊗
Mix

We prove correctness of AB⊗
Mix by defining a set of viable items which formal-

izes the description of items given at the beginning of the section and then a
deduction length function which we use to prove completeness of the system.

Definition 3.19. We define the set W of viable items of AB⊗
Mix as follows:

{ (i,∆ . Γ → a, j) | wi+1 . . .wj ⇒∗ ∆,
Ξ aΛ ⇒∗ c,
wk+1 . . .wi ⇒∗ Ξ, 0 6 k < i }

∪
{ (i, Γ / ∆ → a, j) | wi+1 . . .wj ⇒∗ ∆,

Ξ aΛ ⇒∗ c,
wj+1 . . .wl ⇒∗ Λ, j < l 6 n }

Proposition 3.9. Soundness of AB⊗
Mix.

V(D) ⊆ W.

Proof. For each item in V(D), we shall prove that the constraints on viable
items W are satisfied.

70 3.5. Mixed regime

(5
,b
→

b,
6)

(2
,s
→

s,
3)

(4
,s
→

s,
5)

(3
,(

s\
s)

/s
→

(s
\s

)/
s,

4)
(3

,(
s\

s)
/s

.
s
→

s\
s,

4)
(3

,(
s\

s)
/
s
s
→

s\
s,

5)
(3

,s
/

(s
\s

)/
s
s
→

s,
5)

(2
,s

,(
s\

s)
/s

,s
→

s,
5)

(2
,.

s
b
→

s
⊗

b,
2)

(2
,s

.
b
→

s
⊗

b,
5)

(2
,s

b
→

s
⊗

b,
6)

(1
,s

/
(s
⊗

b)
→

s/
(s
⊗

b)
,2

)
(1

,s
/
(s
⊗

b)
.

s
⊗

b
→

s,
2)

(1
,s

/
(s
⊗

b)
s
⊗

b
→

s,
6)

(0
,s

/
s
→

s/
s,

1)
(0

,s
/s

.
s
→

s,
1)

(0
,s

/s
s
→

s,
6)

Figure 3.8: Deduction of ¬[p ∧ q] in grammar PL.

Deductive Parsers 71

1. (i − 1,a → a, i) is an axiom. Then wi → a ∈ Lex. Hence wi ⇒ a.
Moreover, we take Ξ ≡ ε, Λ ≡ ε and c ≡ a.

2. (i,∆.a → b, j) is deduced from (i,∆ → b/a, j). By IH, wi+1 . . .wj ⇒∗ ∆

and ∆ → b/a ∈ ÃX
∗
. Hence ∆ a → b ∈ ÃX

∗
. Furthermore, Ξ ≡ ε, Λ ≡ ε

and c ≡ b.

3. (i,∆a . Γ → b, j) is deduced from (i,∆ . aΓ → b, j) and ε ⇒+ a. By IH,
wi+1 . . .wj ⇒∗ ∆ and Ξ ′ b Λ ′ ⇒∗ c ′ with wk+1 . . .wi ⇒∗ Ξ ′. We have
wi+1 . . .wj ⇒∗ ∆ a, Ξ ≡ Ξ ′, Λ ≡ Λ ′ and c ≡ c ′.

4. (i,∆a . Γ → b, j) is deduced from (i,∆ . aΓ → b,m) and (m, Γ ′ → a, j).
By IH, wi+1 . . .wm ⇒∗ ∆, Ξ ′ b Λ ′ ⇒∗ c ′ with wk+1 . . .wi ⇒∗ Ξ ′ and
wm+1 . . .wj ⇒∗ Γ ′. Hence wi+1 . . .wj ⇒∗ ∆Γ ′ ⇒ ∆ a, Ξ ≡ Ξ ′, Λ ≡ Λ ′

and c ≡ c ′.

5. (j, .a b → a ⊗ b, j) is deduced from (i,∆ ′ . a ⊗ b Γ → c ′, j). By IH,
wi+1 . . .wj ⇒∗ ∆ ′ and Ξ ′ c ′ Λ ′ ⇒∗ c ′′ with wk+1 . . .wi ⇒∗ Ξ ′. We have
∆ ≡ ε, c ≡ c ′′, Ξ ≡ Ξ ′∆ ′ and Λ ≡ ΓΛ ′.

In order to prove completeness, we shall define an appropriate dfl. Let us
exemplify what parameters shall take part in its calculation.

Example 3.11. We consider the case of items of the form (i, Γ / ∆ → a, j).

Consider (i,∆ → b\a, j) and let d(i,∆ → b\a, j) = m. We have ∆ → b\a ∈
ÃX

∗
. Then also b ∆ → a ∈ ÃX

∗
. For (i,b /∆ → a, j), we should count at least

m + 1. The predictive component of (i,∆ → b\a, j) is null, because prediction
applies only product axioms. Thus also that of (i,b / ∆ → a, j) is null. Thus
we count d(i,b/∆ → a, j) = m+ |Γ | where |Γ | = 1. Observe that for every item
|Γ | 6 2.

Let d(r, Γ b / ∆ → a, j) = m. Suppose ∆ ′ → b ∈ ÃX
?

and wi+1 . . .wr ⇒µ

∆ ′, with µ minimal. Since there may be steps of prediction, we count 2µ.
Furthermore, we count the steps of completion between j and i as for the CYK
system. Thus d(i, Γ / b ∆ → a, j) = m + 2µ + j − i.

Consider⊗-prediction of an item (i,a b/ → a⊗b, i). Let Λ a⊗b wj+1 . . .wl ⇒∗

c for some j and l such that i 6 j 6 l 6 n, Λ ∈ F∗ and c ∈ F. Let us split this
into: Λ a⊗b Ξ ⇒π c covering the predictive part and wj+1 . . .wl ⇒ζ Ξ covering
the recognition of a valid suffix. Thus, for predicting (i,a b/ → a ⊗ b, i) we
count π+ 2ζ+ l− j: the predictive part single, the recognition part double and
the portion covered.

Summing up, for (i, Γ / ∆ → a, j) we have:

π + 2µ + 2ζ + j − i + l − j + |Γ | = π + 2µ + 2ζ + l − i + |Γ |

72 3.5. Mixed regime

For (i,∆ . Γ → a, j) we proceed by symmetry.

Thus we define the following dfl for AB⊗
Mix.

Definition 3.20. Deduction length function for AB⊗
Mix.

d(i − 1,a → a, i) = 0

d(i,∆ . Γ → a, j) = min{ π + 2µ + 2ζ + j − k + |Γ | | wi+1 . . .wj ⇒µ ∆,
Ξ aΛ ⇒π c,
wk+1 . . .wi ⇒ζ Ξ }

d(i, Γ / ∆ → a, j) = min{ π + 2µ + 2ζ + l − i + |Γ | | wi+1 . . .wj ⇒µ ∆,
Λ aΞ ⇒π c,
wj+1 . . .wl ⇒ζ Ξ }

Proposition 3.10. Completeness of AB⊗
Mix.

W ⊆ V(D).

Proof. We check that that d from Definition 3.20 is a correct dfl for viable
items of AB⊗

Mix.

1. Consider ξ = (i,∆.b → a, j). Let ∆ → a/b ∈ ÃX
∗

and wi+1 . . .wj ⇒∗ ∆

be a minimal derivation. Then η = (i,∆ → a/b, j) ∈ W and ξ is derived
from η. The predictive component of these items is null. Thus, we have

d(η) = 0 + 2µ + 0 + j − 0 + 0
d(ξ) = 0 + 2µ + 0 + j − 0 + 1
d(ξ) = d(η) + 1

2. Consider ξ = (i,∆ b . Γ → a, j). We shall consider two subcases.

a) Assume that ε ⇒+ b. Let wi+1 . . .wj ⇒µ ∆, Ξ aΛ ⇒π c and for
some k, 0 6 k 6 i, wk+1 . . .wi ⇒ζ Ξ with µ,π and ζ minimal.
Then η = (i,∆ . b Γ → a, j) ∈ W and

d(η) = π + 2µ + 2ζ + j − k + |b Γ |

For ξ, we have wi+1 . . .wj ⇒µ ∆ ⇒ ∆ b. Hence,

d(ξ) = π + 2(µ + 1) + 2ζ + j − k + |Γ | = d(η) + 1

b) Let wi+1 . . .wm ⇒µ ∆, ΞaΛ ⇒π c and for some k, 0 6 k 6 i,
wk+1 . . .wi ⇒ζ Ξ with µ,π and ζ minimal. Then η = (i,∆ . b Γ →
a,m) ∈ W and

d(η) = π + 2µ + 2ζ + m − k + |b Γ |

Deductive Parsers 73

Let wm+1 . . .wj ⇒µ′
∆ ′ with µ ′ minimal and ∆ ′ → b ∈ ÃX

?
. Then

θ = (m,∆ ′ → b, j) ∈ W. For θ, we have Ξ∆ b ΓΛ ⇒ ΞaΛ ⇒π c and
wk+1 . . .wm ⇒ζ+µ Ξ∆. Thus,

d(θ) = (π + 1) + 2µ ′ + 2(µ + ζ) + j − k + 0

For ξ, we have wi+1 . . .wj ⇒µ+µ′
∆∆ ′ ⇒ ∆b.

d(ξ) = π + 2(µ + µ ′ + 1) + 2ζ + j − k + |Γ |

Hence d(ξ) > d(θ) + 1 and d(ξ) > d(η) + (j − m + 1)

3. Consider the case of prediction of ξ = (j, .a b → a ⊗ b, j). Suppose
∆ a ⊗ b Γ → c ′ ∈ ÃX

?
, that for some 0 6 i 6 j, wi+1 . . .wj ⇒µ ∆, that

Ξ c ′ Λ ⇒π c and for some 0 6 k 6 i, wk+1 . . .wi ⇒ζ Ξ with µ,π and ζ

minimal. Then η = (i,∆ . a⊗ b Γ → c ′, j) ∈ W, ξ is derived from η and

d(η) = π + 2µ + 2ζ + j − k + |a⊗ b Γ |

For ξ we have Ξ∆ a ⊗ b ΓΛ ⇒ Ξ c ′ Λ ⇒π c and wk+1 . . .wj ⇒µ+ζ Ξ∆.
Hence,

d(ξ) = (π + 1) + 2(µ + ζ) + j − k + |a b|

Observe that |Γ | 6 1. We conclude d(ξ) 6 d(η) + 1.

3.6 Approaching Lambek systems

Lambek style categorial grammars are intrinsically richer than Ajdukiewicz–
Bar-Hillel categorial grammars. As we said before, the great difference is that
while these grammars only compose larger structures from simpler ones (as CF

grammars), Lambek grammars may also decompose complex structures into
simpler ones.

In this chapter, we saw several ways of regimenting the composition rules
by means of indices. On the other hand, the introduction rules of Lambek
systems

Γ b → c

Γ → c/b

a Γ → c

Γ → a\c

do not seem to have such a clear indexed counterpart.
An early attempt of applying chart methods to hypothetical reasoning of

Lambek calculi is [König, 1994]. However, as [Hepple, 1999] says, this “method
requires rather complicated book-keeping”.

In automatic proof search for Lambek style grammars, one often adopts
a cut-free axiomatization7 of the underlying logic. Then, the proof of a se-
quent may consist in reaching the axioms by forward application (that is, from

7Perhaps it would be more appropriate to say non-erasing axiomatization, meaning a
system of rules that do not cancel formulas from the premises.

74 3.6. Approaching Lambek systems

conclusion to premises) of each rule of the calculus8. A refinement of this ap-
proach is the so called goal-directed proof search, proposed in [Hendriks, 1993]
for the associative Lambek calculus without product, in [Moortgat, 1997] and
in [Andreoli, 1992, 2001] within the broader field of linear logic. However, we
should mention that unless the underlying logic is associative, these approaches
require the input sequent, the goal, to be already assigned a structure to start
the application of the rules. Secondly, one may immediately notice that in the
conclusion-to-premises approach the search space also contains sequents that
are not provable. For example, the following is a possible result of applying,
conclusion-to-premises, the left rule for \ of the sequent calculus9:

a/(b\a) → b a → a

a/(b\a), b\a → a
⇑

Observe that there is no type invariant (as the balancing constraints of [van
Benthem, 1991; Moortgat, 1988]) preventing the occurrence of a/(b\a) → b.

Other approaches to parsing with Lambek grammars can be found in the
literature. [Finkel and Tellier, 1996] formulate a CYK style algorithm for the
product-free associative Lambek calculus. Their method is based on the al-
gorithm in [Pentus, 1993] for the conversion of a Lambek grammar into a CF

grammar. The recognition algorithm is cubic on the length of the input string,
although the grammar conversion results in “a long process” and “compli-
cated”, as the authors admit. Indeed, Pentus’ translation is exponential on the
size of the input Lambek grammar, and this may have serious consequences for
the recognition procedure itself.

Another approach is the one of Hepple [1996, 1999] based on a method of
first-order compilation. This method “involves excising the subformulae that
correspond to hypotheticals, leaving a first-order residue. The excised subfor-
mulae are added as additional assumptions”10. As the one of König, Hepple’s
approach constrains the use of “hypotheticals” through a rather complicate

8 In [Shieber et al., 1995] this is discussed as the only practical approach. Let us quote
from the section “Inadequacy of sequent calculi” (inadequacy for chart parsing methods):

. . . the rule used for the hypothetical analysis [. . .] has the form

ΓB ` A

Γ ` A/B

It is reasonable to use this rule in a goal-directed fashion (consequent to an-
tecedent) to show Γ ` A/B, but using it in a forward direction is impractical,
because B must be arbitrarily assumed before knowing whether the rule is
applicable.

9The rule we are referring to is usually presented as follows:

∆ → b Γ [a] → c

Γ [(∆, b\a)] → c

10[Hepple, 1999].

Deductive Parsers 75

mechanism of indexing and index sharing. This mechanism allows then the
application of standard parsing techniques (viz. Earley style parsing) to Lam-
bek grammars. The two main limitations of this approach are the non-logical
character of the first-order compilation and the absence of product formulas.
We will define in Chapter 5 a logical method for converting NL grammars into
AB⊗ grammars which will overcome these limitations.

Other parsing algorithms for Lambek grammars have been based on proof
nets. We mention the works of [Morrill, 1996] and [Carpenter and Morrill, 2005]
that formulate CYK style parsers for proof nets formulations of the associative
and non-associative Lambek calculus.

Most of the works discussed briefly in this section have been designed for
the associative Lambek calculus. Nowadays, it is not surprising that they are
not polynomial, as we know from [Pentus, 2006] (circulated before as [Pentus,
2003]) that the calculus of [Lambek, 1958] is NP-complete11. The multi-modal
system, on the other hand, is even more complex. As we mentioned at the
end of Chapter 2, [Carpenter, 1996] and [Moot, 2002] show that with or with-
out linear structural rules (rules that do not erase nor duplicate material), the
multi-modal system is undecidable. However, [Moot, 2002] proves also that
if the structural rules are linear and non-expanding (that is, the succedent
of each structural rule contains as many unary connectives as the antecedent),
the recognition problem for multi-modal type-logical grammars is P-space com-
plete.

A better situation holds for other fragments of the Lambek calculus. [Sava-
teev, 2006] proves that sequents of the unidirectional product-free associative
Lambek calculus can be recognized in cubic time. Instead, [de Groote, 1999]
and [de Groote and Lamarche, 2002] prove that two-formula sequents of the
non-associative Lambek calculus (that is sequents whose antecedent structure
is expressed through the branching of products) can be recognized in polyno-
mial time. [Buszkowski, 2005] and [Bulinśka, 2006] extend this result to NL

enriched with non-logical axioms (and also empty antecedent in the case of
Bulíska).

A feature shared by many of the approaches mentioned before is that the
recognition process is divided into two main components: a grammar prepro-
cessing module, ‘simplifying’ the structure of syntactic categories, and an actual
parsing module, operating on the simplified categories and implementing (some
variant of) some traditional context-free parsing algorithm.

In the second part of this book, we will follow this approach in imple-
menting an efficient lexical preprocessing module for grammars based on the
non-associative Lambek calculus. This module will allow the application of the
parsing systems discussed in this chapter to non-associative Lambek grammars
with product. In Chapter 7, we will also prove that our lexical conversion keeps
the size of the resulting grammar within a reasonable size. This will enable us

11On the other hand, the parsers of [Hepple, 1999] and [König, 1994] are designed for the
product-free associative Lambek calculus, whose complexity is still an open problem.

76 3.7. Conclusion

to prove polynomial recognition for non-associative Lambek grammars with
product.

3.7 Conclusion

In this chapter, I presented the two most well known parsing systems for CF

grammars. My contribution was to extend these systems to AB grammars
with product. I presented then a new parsing system, called AB⊗

Mix, which
incorporates the most pleasant features of the two previous systems.

We saw how different formulations of a logical system (namely, AB⊗, AB
⊗

and ÃB
⊗

) may highlight different deduction strategies that can be encoded in
a parsing system.

The implementation and complexity of the parsing systems studied in this
chapter are the subject of Chapter 4. There we prove that all the parsing
systems presented in this chapter can be implemented as cubic time parsing
algorithms. We will also see that parsing with AB⊗ grammars can be more
efficient than parsing with context-free grammars, since the abstract inference
schemes of AB⊗ are not dependent on specific components of the grammar.

The reader who is not interested in the implementation of the parsing sys-
tems discussed in this chapter may skip the next chapter and go directly to
Part III, where we present the methods for applying the parsing systems studied
here to NL grammars.

Chapter 4

Implementations

The labeled inference rules of the parsing systems formulated in Chapter
3 specify what item follows from which premises. However, a parsing

system does not specify any order in which its rules should be applied nor how
the inference process should be iterated. In this chapter, I present some ways of
implementing the parsing systems of Chapter 3. The first is the agenda-driven
chart-based deductive procedure of [Shieber et al., 1995]. I give a functional
definition of this procedure that can be straightforwardly applied to the parsing
systems of Chapter 3 by just specifying the appropriate rules. Then, I formulate
tabular parsing algorithms for the parsing systems that we saw before. This
kind of implementation is in fact the most efficient as it results in cubic time
recognition methods.

4.1 Agenda-driven chart-based procedure

An agenda-driven chart-based procedure, AC procedure for short, operates on
two sets of items called the agenda and the chart. The agenda contains all
items whose consequences are still to be computed. The chart the items whose
consequences have already been computed.

Algorithm 4.1 is an adaptation of the AC procedure described in [Shieber
et al., 1995].

Algorithm 4.1. Agenda-driven chart-based deduction procedure.

1. Initialize the chart to the empty set of items and the agenda to the axioms
of the deduction system.

2. Repeat the following steps until the agenda is exhausted:

a) Select an item from the agenda, called the trigger item, and remove
it.

b) Add the trigger item to the chart, if necessary.

78 4.1. Agenda-driven chart-based procedure

c) If the trigger item was added to the chart, generate all items that
are new immediate consequences of the trigger item together with
all items in the chart, and add these generated items to the agenda.

3. If a goal item is in the chart, the goal is proved (and the string recognized);
otherwise it is not.

A goal item is an item that covers the whole input string with the start
category, for example (0, s,n) in AB⊗

CYK, (0, s• → S ′,n) in AB⊗
Earley and

(0,∆ → s,n) in AB⊗
Mix, where n is the length of the input string. The proviso

“if necessary” in 2b means “if not already present”, and in 2c “new” means
“not already present”. In [Shieber et al., 1995], one may find a detailed dis-
cussion of the problem of redundant items as well as a proof of soundness and
completeness of Algorithm 4.1.

Functional implementation

Algorithm 4.2 below is a functional implementation of the AC procedure spec-
ified in Algorithm 4.1. This implementation is similar to the one in [van Ei-
jck, 2004] who provides a functional implementation of CFEarley. However, it
differs in that we directly work with sets, rather than with lists from which
duplicates are removed. Sets can be implemented in the functional setting as
red-black trees, see [Okasaki, 1998, 1999], and also [Cormen et al., 1990] and
[Adams, 1993]. Roughly, red-black trees represent sets as trees whose nodes
are ordered. For instance, what we write as {a,b, c,d, e, f,g} is interpreted as
the tree:

a c
b

e g

f
d

Red and black are node labels which enforce further invariants and allow to
implement set-theoretic operations efficiently, see [Cormen et al., 1990]. We
assume that a data-type for sets of objects of type a, which we write {a}, has
been defined. We write X{x} for a set X with a distinguished element x, so that
X results from X{x} by removing the element x (we may, for example, assume
that x is the least element of the red-black tree). We use the conventional
notation for operations on sets.

Finally, we assume that the rules of the parsing system are functions whose
inputs are the premises and whose output is the conclusion.

Algorithm 4.2. Functional implementation of the AC procedure.

Let a parsing system D = 〈I,A,R〉 be given.

Let type Chart := {I}. Initial value of the chart variable Z := ∅.
Let type Agenda := {I}. Initial value of the agenda variable Y := A.

Implementations 79

The function

exhaust-agenda :: (Chart,Agenda) → (Chart,Agenda)

is defined in Figure 4.1.

If, after termination of exhaust-agenda, the goal item is in Z, then the goal is
proved, otherwise it is not.

exhaust-agenda (Z, ∅) = (Z, ∅)
exhaust-agenda (Z,Y{y}) =

if y ∈ Z

then exhaust-agenda (Z,Y)
else exhaust-agenda (Z ′,Y ′)

where
a) C := { c | z ∈ Z, ρ ∈ R, c ∈ ρ(y)(z) }

b) Y ′ := Y ∪ C

c) Z ′ := {y} ∪ Z

Figure 4.1: Functional implementation of the agenda-driven chart-based pro-
cedure.

Step by step analysis

The function exhaust-agenda calculates all the valid items of a given parsing
system. The constructs type x := y declare a type variable x to be of the form
y. Thus Chart and Agenda are type variables for sets of items: we initialize
these variables to the empty set and to the set of axioms of the parsing system,
respectively. The derived items are stored in the chart variable Z at the end
of the computation, that is when the agenda variable Y is empty. At each
iteration, the recursive call of exhaust-agenda tests if an item y taken from
the agenda is already in the chart Z. If this is the case, its direct consequences
have already been computed, and we can proceed to the next item in the
agenda. Otherwise, we calculate in the set C the immediate consequences of y

with every z ∈ Z on the basis of the rules in R, in line a)1. In line b), we build
the new agenda as the union of the old agenda, minus the trigger item y, with
the immediate consequences of y. Then the trigger y is added to the chart.
The process is iterated with the new chart and new agenda until the agenda is
empty.

What still remains to be done is to appropriately implement the rules of
the parsing system. Let us consider the implementation of AB⊗

CYK.

1Observe that the rules in R are functions into {I}. This is because we return ∅ if a rule
does not apply to some premises.

80 4.2. Tabular parsing

Example 4.1. Implementation of rules for AB⊗
CYK = 〈I,A,R〉.

Let a set of formulas Σ be calculated from the axioms as in Definition 3.5 on
page 51. Then R consists of rules el and p Σ defined below.

p :: {F} → I → I → {I}

p Σ (i,a,k) (k ′,b, j) = if k ≡ k ′ & a⊗ b ∈ Σ then {(i,a⊗ b, j)} else ∅

el, ei :: I → I → {I}

el x y =
⋃

16i64 ei x y

e1 (i,b,k) (k ′,b ′\a, j) = if k ≡ k ′ & b ≡ b ′ then {(i,a, j)} else ∅
e2 (i,a/b,k) (k ′,b ′, j) = if k ≡ k ′ & b ≡ b ′ then {(i,a, j)} else ∅
e3 (k ′,b ′\a, j) (i,b,k) = if k ≡ k ′ & b ≡ b ′ then {(i,a, j)} else ∅
e4 (k ′,b ′, j) (i,a/b,k) = if k ≡ k ′ & b ≡ b ′ then {(i,a, j)} else ∅
ei = ∅, 1 6 i 6 4

Observe that ei, 1 6 i 6 4 exhausts the possible occurrences of patterns
for the premises. Hence el is a complete definition of the cancellation rules of
AB⊗

CYK.
The application of Algorithm 4.2 to the CFCYK system is straightforward.

The rules may look like the following.

Example 4.2. Implementation of rules for CFCYK = 〈I,A,R〉.
Let P be the set of the productions of the input grammar. Then R consists of
cfInf P where:

cfInf :: P → I → I → {I}

cfInf P (i,a,k) (l,b, j) =

{ (i, c, j) | l ≡ k, (a ′ b ′ → c) ∈ P, a ≡ a ′, b ≡ b ′ }

∪

{ (l, c,k) | j ≡ i, (b ′ a ′ → c) ∈ P, a ≡ a ′, b ≡ b ′ }

The procedure can immediately be extended to the AB⊗
Earley and AB⊗

Mix

systems. We omit the details about the straightforward implementation of the
rules.

4.2 Tabular parsing

Though very simple, the procedure defined in Algorithm 4.2 is not an optimal
solution for practical parsing. Its main limitation is that at each iteration, we
should check whether the trigger item had already been computed.

Implementations 81

The algorithms that we are going to see in the following sections avoid this
problem by making use of more refined data structures which allow a more
efficient bookkeeping strategy. They are called tabular because their method
is based on the construction of a table, called parse table, or of a similar data
structure. The table is a database that stores systematically the partial analyses
obtained at a given point of the computation. Thus these analyses can be
efficiently retrieved from the table at any point of the computation.

For example, in the case of the CYK parser, if we are analyzing a string
w1 . . .wn in a grammar G, then the table T may consist of cells, denoted t(j,i),
with 0 6 j < n and 0 < i 6 n. The cells contain formulas and we have that
c ∈ t(j,i) if and only if wj+1 . . .wi ⇒∗ c. Therefore, to test whether w1 . . .wn

belongs to Lt(G) according to the CYK algorithm, we compute the parse table
for w1 . . .wn and check whether the start symbol of G is in t(0,n).

4.3 Tabular CYK algorithm

We present the CYK method of table construction. The algorithm works for CF

grammars in CNF without ε-productions or Ajdukiewicz–Bar-Hillel grammars
(with and without product) without assignments for the empty string. We call
these grammars lexicalized grammars. The symbol

`
is a variable over binary

operations on sets of formulas. After the definition of the table construction
method we will instantiate

`
with the specific operations proper to a CF or

to an Ajdukiewicz–Bar-Hillel grammar. Similarly, Start is a variable over the
start symbol of the input grammar.

Algorithm 4.3.

Input: A lexicalized grammar G = 〈Vt,Start,Lex,D〉 without ε-assignments
and a string w1 . . .wn.

Output: A parse table T for w1 . . .wn such that t(j,i) contains c if and only if
wj+1 . . .wi ⇒∗ c.

Method: see Figure 4.2 on the following page.

Given an appropriate instantiation for
`

, the algorithm recognizes a string
w1 . . .wn if and only if Start ∈ t(0,n). We provide the instantiation of

`
for

CF first and for AB⊗ later.

Definition 4.1. Instantiation of
`

for CF grammars.

If the grammar input of Algorithm 4.3 is a CF grammar G, then
`

:= ~P,
where P is the set of the productions of G and (~P) :: {F} → {F} → {F} is
defined as follows:

X ~P Y = { A | B ∈ X, C ∈ Y, B C → A ∈ P }

We call CYKCF the algorithm resulting from Algorithm 4.3 by instantiating
`

with ~P.

82 4.3. Tabular CYK algorithm

begin
loop1 : for i := 1 to n do:

t(i−1,i) = { a | wi → a ∈ Lex }

loop2 : for i := 2 to n do:
for j := i − 2 down-to 0 do:

for k := j + 1 to i − 1 do:
t(j,i) := t(j,i) ∪ (t(j,k)

`
t(k,i))

end.

Figure 4.2: Table construction method of the CYK algorithm.

Example 4.3. We examine Algorithm 4.3 applied to the string every man
loves a woman and to grammar G ′

3 in Example 3.2.

Table generated:

1 2 3 4 5 i
j

Det NP S 0
N 1

TV VP 2
Det NP 3

N 4

The CYK parsing algorithm is also called chart parser for another graphical
representation of the deduction to which it gives rise. The chart for Example
4.3 is presented in Figure 4.3 on the next page. The vertices of the graph
indicate the positions of the words in the input string. The edge label indicates
the grammatical category of the subexpression between the vertices linked by
the edge.

Example 4.4. Let us consider now a second example from grammar G ′
1 which

consists of the following rewriting rules.

O S ′ | S S | O C → S

S C → S ′

(→ O

) → C

This grammar generates the language of non-empty balanced brackets. Fur-
thermore this grammar is in Chomsky normal form.

Implementations 83

0 every 1 man 2 loves 3 a 4 woman 5

Det N TV

Det N

NP

NP

VP

S

Figure 4.3: Chart for Example 4.3.

Algorithm CYKCF applied to string (()())() and grammar G ′
1.

1 2 3 4 5 6 7 8 i
j

O S S 0
O S S S ′ 1

C 2
O S 3

C 4
C 5

O S 6
C 7

The correctness of algorithm CYKCF is known and we refer the reader to
[Aho and Ullman, 1972] for the details of the proofs of soundness and com-
pleteness. However, we sketch the proof of completeness below for the case of
AB⊗ grammars.

We now define the
`

operation for basic categorial grammars.

Definition 4.2. Instantiation of
`

for AB⊗ grammars.
If the grammar input of Algorithm 4.3 is an AB⊗ grammar G, then

`
:= >Σ,

where Σ is a set of formulas obtained from the lexical categories assigned to
the input string by function δ− in Definition 3.4 on page 51 and (>Σ) :: {F} →
{F} → {F} is defined as follows:

X >Σ Y = { c | c/b ∈ X, b ∈ Y }

∪
{ c | b ∈ X, b\c ∈ Y }

∪
{ a⊗ b | a ∈ X, b ∈ Y, a⊗ b ∈ Σ }

84 4.3. Tabular CYK algorithm

We call CYKAB⊗ the algorithm resulting from Algorithm 4.3 by instantiating`
with >Σ.

We present an example of application of CYKAB⊗ .

Example 4.5. Application of CYKAB⊗ to the string aacbb and to grammar
A7 for the language ancbn whose lexicon is

a → s/(s⊗ b)

c → s

b → b

Parse table:

1 2 3 4 5 i
j

s/(s⊗ b) s 0
s/(s⊗ b) s s⊗ b 1

s s⊗ b 2
b 3

b 4

Figure 4.4 shows the corresponding chart.

0 a 1 a 2 c 3 b 4 b 5

s/(s ⊗ b)

s/(s ⊗ b)

s b

b

s ⊗ b

s

s ⊗ b

s

Figure 4.4: Chart for the string aacbb in grammar A7.

Let us consider a second example involving ambiguity.

Example 4.6. We apply CYKAB⊗ to the grammar PL in Example 3.6 on
page 52 and to the string ¬p ∧ q.

Implementations 85

Parse table:
1 2 3 4 i

j

s/s s s 0
s s 1

(s\s)/s s\s 2
s 3

Observe that the parse table encodes the two possible analyses of the input
string, in fact s ∈ t(0,4) can be obtained either from t(0,2) > t(2,4) or from
t(0,1) > t(1,4) (we omitted the Σ parameter, as in this case it is empty).

The correctness of CYKAB⊗ is stated below.

Proposition 4.1. If algorithm CYKAB⊗ is applied to a lexicalized grammar
G and to a string w1 . . .wn, then upon termination,

c ∈ t(j,i) iff wj+1 . . .wi ⇒∗ c

Proof. The procedure in Algorithm 4.3 is a standard implementation of the
CYK table construction method whose correctness is proved in [Aho and Ull-
man, 1972] for CF grammars. The main observation is that at the point in
which t(j,i) is computed, the cells in row j to the left of t(j,i) (that is the cells
t(j,k) with j < k < i) are already completed as well as the cells in column i

below t(j,i) (that is the cells t(k,i) with j < k < i). Soundness is trivial. For
completeness, one works by induction on i. The base case (when i ≡ j + 1)
follows from the initialization of the algorithm in loop1. If wj+1 . . .wi ⇒∗ c

and i > j + 1, then for some k such that j < k < i, wj+1 . . .wk ⇒∗ c/a and
wk+1 . . .wj ⇒∗ a (or similarly for the symmetric slash and the product). By
IH, c/a ∈ t(j,k) and a ∈ t(k,i). Hence c ∈ t(j,k) >Σ t(k,i) ⊆ t(j,i).

The complexity of the CYK algorithm is calculated in terms of the elemen-
tary operations required to build the table. The exact definition of elementary
operation can be found in [Aho and Ullman, 1972]. However, every single op-
eration performed in each of the clauses of Algorithm 4.3 can be considered an
elementary operation (apart from

`
, see Remark 4.1 on the following page).

We state the main result concerning the complexity of Algorithm 4.3.

Proposition 4.2. Let n be the length of the input string. Then Algorithm
4.3 requires O(n3) elementary operations to compute t(j,i) for all i and j.

Proof. See [Aho and Ullman, 1972].

The calculation is based on the three embedded cycles which define the
main loop of the algorithm, namely loop2. In the most external one, i ranges
between 2 and n, which means that the cycle for j is executed n − 1 times. In
turn, j ranges between 0 and i − 2. Thus the k cycle is executed i − 1 times.
Finally, k ranges between j + 1 and i − 1, hence in the worse case between 1
and n − 1. Therefore Algorithm 4.3 performs O(n3) elementary operations.

86 4.4. The Earley algorithm

Remark 4.1. The complexity result expressed in Proposition 4.2 concerns the
variation of time in relation to the length of the input string. Another parame-
ter which is relevant in the calculation of the complexity of the CYK algorithm
for CF grammars is the complexity of the operation (~P), see [Nederhof and
Satta, 2004]. Clearly, this depends on the size of the input grammar, expressed
in terms of the number of its productions: |G| = O(|P|). Thus, the complexity
of Algorithm 4.3 is expressed as O(|G|n3). We shall remark that conversion to
CNF may square the size of the original grammar. As in practical applications,
|G| is much bigger than the length of the input string, squaring it may affect
drastically the performance of the CYK algorithm.

Concerning CYKAB⊗ , we observe that the grammar takes no part in the table
completion procedure in loop2. Instead, only the set Σ of product subformulas
is used by the rule in Definition 4.2. Hence for loop2 of CYKAB⊗ we have
a complexity of O(|Σ|n3) and for the product-free variant of the algorithm
O(n3). Furthermore, AB⊗ grammars, without ε-assignments are already in
the required normal form.

CYKAB⊗ can easily be extended to AAB grammars, by simply adding the
associative cancellation rules. One extends the definition of > with the follow-
ing clauses

{ c/a | c/b ∈ X, b/a ∈ Y }

∪
{ a\c | a\b ∈ X, b\c ∈ Y }

We observe also that the outputs a/c and c\a of the associative composition
rules may not belong themselves to the set of subformulas of formulas of the
grammar. This aspect may increase the complexity of the algorithm. However,
[Vijay-Shanker and Weir, 1990] prove that the even a more general variant of
the AAB system2 can be parsed in time O(n6).

4.4 The Earley algorithm

In this section and in the next one, I give the implementation of the Earley
algorithm for CF and AB⊗. I will follow the formulation of [Aho and Ullman,
1972]. With some abuse of terminology, we will continue to call items the
objects on which the algorithms in the following sections work, although such
objects are distinct from those of Chapter 3.

Let a CF grammar G = 〈Vt,S,F,P〉 and a string w1 . . .wn be given. Let
V = Vt ∪ F. Earley items are object of the form

(X1 . . .Xk • Xk+1 . . .Xm → A, i)

2Such variant admits generalized associative composition rules that abstract on the num-
ber of the arguments of the categories and partially on the orientation of the slashes. We refer
the reader to [Steedman, 2000b] for a discussion of this system and its complexity properties.

Implementations 87

where X1 . . .Xm → A ∈ AX, • is a symbol not in V, 0 6 k 6 m and 0 6 i 6 n.
The algorithm works by constructing, for each integer j, 0 6 j 6 n, a list of

items Ij such that (∆ • Γ → A, i) ∈ Ij with 0 6 i 6 j, if and only if for some Ξ

and Λ,
wi+1 . . .wj ⇒∗ ∆,
ΞAΛ ⇒∗ S,
w1 . . .wi ⇒∗ Ξ

The list I0 . . . In is called the parse list for the input string w1 . . .wn. One has
that w1 . . .wn ∈ L(G) if and only if (∆• → S, 0) ∈ In.

4.4.1 The Earley algorithm for CF grammars

In [Aho and Ullman, 1972], the Earley algorithm for CF grammars is presented
as follows.

Algorithm 4.4. Earley’s parsing algorithm.

Input. A CF grammar G = 〈Vt,S,F,P〉 and a string w1 . . .wn.

Output. The parse list I0 . . . In.

Method. See Figure 4.5.

We first construct I0 according to steps 1, 2 and 3.

1. For all ∆ → S ∈ P, add (•∆ → S, 0) to I0.

Now perform steps 2 and 3 until no new items can be added to I0.

2. If (Γ• → B, 0) ∈ I0, add (Λ B•∆ → C, 0) to I0, for all (Λ•B∆ → C, 0) ∈ I0.

3. If (Λ • B∆ → C, 0) ∈ I0, for all the Γ → B ∈ P add (•Γ → B, 0) to I0
(provided this item is not already in I0).

We now construct Ij having constructed I0 . . . Ij−1.

4. For each (∆ • wj Λ → A, i) ∈ Ij−1, add (∆wj • Λ → A, i) to Ij

Now perform steps 5 and 6 until no new items can be added to Ij.

5. Let (Γ• → B, i) ∈ Ij. For each item (Λ •B∆ → C, k) ∈ Ii, add (Λ B •∆ →

C, k) ∈ Ij

6. If (Λ • B∆ → C, i) ∈ Ij, for all the Γ → B ∈ P add (•Γ → B, j) to Ij.

Figure 4.5: The Earley parse list construction method for CF grammars.

Example 4.7. In Figure 4.6 on the following page, we show the parse list
resulting by application of Algorithm 4.4 to the grammar of balanced brackets
whose productions are

ε | [S]S → S

88 4.4. The Earley algorithm

and to the string [[]][].

I0 I1 I2

(•[S]S → S, 0) ([•S]S → S, 0) ([•S]S → S, 1)
(• → S, 0) (•[S]S → S, 1) (•[S]S → S, 2)

(• → S, 1) (• → S, 2)
([S•]S → S, 0) ([S•]S → S, 1)

I3 I4 I5

([S] • S → S, 1) ([S] • S → S, 0) ([•S]S → S, 4)
(•[S]S → S, 3) (•[S]S → S, 4) (•[S]S → S, 5)
(• → S, 3) (• → S, 4) (• → S, 5)
([S]S• → S, 1) ([S]S• → S, 0) ([S•]S → S, 4)
([S•]S → S, 0)

I6

([S] • S → S, 4)
(•[S]S → S, 6)
(• → S, 6)
([S]S• → S, 4)
([S]S• → S, 0)

Figure 4.6: Parse list for the string [[]][].

Correctness and some computational properties of Algorithm 4.4 are stated
below. The proofs of these statements can be found in [Aho and Ullman, 1972].

Proposition 4.3. Properties of Algorithm 4.4.

1. If parse lists are constructed as in Algorithm 4.4, then (∆ • Γ → A, i) ∈
Ij if and only if wi+1 . . .wj ⇒∗ ∆ and, moreover, for some Λ ∈ V∗,
w1 . . .wiAΛ ⇒∗ S.

2. If the underlying grammar is unambiguous, then when executing Algo-
rithm 4.4 we attempt to add an item (∆•Γ → A, i) to list Ij at most once
if ∆ 6= ε.

3. If the underlying grammar is unambiguous, then Algorithm 4.4 can be
executed in O(n2) operations when the input is of length n.

4. In all cases, Algorithm 4.4 can be executed in O(n3) operations when the
input is of length n.

Proof. See [Aho and Ullman, 1972].

Implementations 89

[Aho and Ullman, 1972] also provide an algorithm for the construction of a
right parse from the parse lists, if one exists, and prove that this can be done
in O(n2) elementary operations.

4.4.2 The Early algorithm for AB
⊗

We present the Early parser for AB
⊗

in the style of [Aho and Ullman, 1972].
Observe that the algorithm implements the rules of the contracted AB⊗

Earley

system from Definition 3.16 on page 65.

Algorithm 4.5. Earley’s parsing algorithm for AB
⊗

.

Input. An AB
⊗

grammar G and a string w1 . . .wn.

Let Σ be the set containing all the δ∗(ai) such that wi → ai ∈ Lex, where δ∗

has been given in Definition 3.12 on page 59.

Output. The parse list I0 . . . In.

Method. See Figure 4.7 on the next page.

The input string w1 . . .wn is accepted if and only if (s• → S ′, 0) ∈ In. Let
us examine an example application of Algorithm 4.5.

Example 4.8. In Figure 4.8 on page 91, we show the parse list resulting by
application of Algorithm 4.5 to the string [[]][] and to the AB

⊗
grammar for

the language balanced brackets whose assignments are

ε → s

[→ s/(c⊗ s)/s

] → c

We have Σ = {s/(c⊗ s)/s, s/(c⊗ s)}

One can verify that Algorithm 4.5 satisfies all properties stated in Proposi-
tion 4.3 for Algorithm 4.4.

Proposition 4.4. Properties of Algorithm 4.5.

1. If parse lists are constructed as in Algorithm 4.5, then (∆ • Γ → a, i) ∈
Ij if and only if wi+1 . . .wj ⇒∗ ∆ and, moreover, for some Λ ∈ V∗,
w1 . . .wiaΛ ⇒∗ s ⇒ S ′.

2. If the underlying grammar is unambiguous, then when executing Algo-
rithm 4.5 we attempt to add an item (∆• Γ → a, i) to list Ij at most once
if ∆ 6= ε.

3. If the underlying grammar is unambiguous, then Algorithm 4.5 can be
executed in O(n2) operations when the input is of length n.

4. In all cases, Algorithm 4.5 can be executed in O(|Σ|n3) operations.

90 4.5. Conclusion

We first construct I0 according to steps 1, 2 and 3.

1. Add (•s → S ′
, 0) to I0.

Now perform steps 2 and 3 until no new items can be added to I0.

2. If (Λ • b ∆ → a, 0) ∈ I0, then

(a) for some formula x,

- if x\b ∈ Σ, then add (•x x\b → b, 0) to I0,

- if b/x ∈ Σ, then add (•b/x x → b, 0) to I0,

(b) if b ≡ b ′
⊗ b ′′

, then add (•b ′ b ′′
→ b, 0) to I0.

(c) if ǫ ⇒
+ b, then add (Λ b • ∆ → a, 0) to I0.

3. If (Γ• → b, 0) ∈ I0, then add (Λ b • ∆ → a, 0) to I0, for all (Λ • b ∆ →

a, 0) ∈ I0.

We now construct Ij having constructed I0 . . . Ij−1.

4. For each (∆ •b Λ → a, i) ∈ Ij−1, if wj → b ∈ Lex, add (∆b •Λ → a, i) to

Ij.

Now perform steps 5 and 6 until no new items can be added to Ij.

5. Let (Γ• → b, i) ∈ Ij. For each item (Λ • b ∆ → a, k) ∈ Ii, add (Λ b • ∆ →

a, k) to Ij.

6. If (Λ • b ∆ → a, i) ∈ Ij, then

(a) for some formula x,

- if x\b ∈ Σ, then add (•x x\b → b, j) to Ij,

- if b/x ∈ Σ, then add (•b/x x → b, j) to Ij,

(b) if b ≡ b ′
⊗ b ′′

, then add (•b ′ b ′′
→ b, j) to Ij.

(c) if ǫ ⇒
+ b, then add (Λ b • ∆ → a, i) to Ij.

Figure 4.7: The Earley algorithm for AB
⊗

grammars.

4.5 Conclusion

In this chapter, I have formulated parsing algorithms for the parsing systems
defined in Chapter 3. The tabular algorithms were simple adaptations of well
known context-free parsing procedures. The problem of a tabular algorithm
for the system AB⊗

Mix remains open. However, the chart-based agenda driven
procedure can easily be applied to this parsing system.

Implementations 91

I0 I1

(•s → S ′, 0) (s/(c⊗ s)/s • s → s/(c⊗ s), 0)
(s• → S ′, 0) (s/(c⊗ s)/s s• → s/(c⊗ s), 0)
(•s/(c⊗ s) c⊗ s → s, 0) (•s/(c⊗ s) c⊗ s → s, 1)
(•s/(c⊗ s)/s s → s/(c⊗ s), 0) (•s/(c⊗ s)/s s → s/(c⊗ s), 1)

(s/(c⊗ s) • c⊗ s → s, 0)
(•c s → c⊗ s, 1)

I2 I3

(s/(c⊗ s)/s • s → s/(c⊗ s), 1) (c • s → c⊗ s, 2)
(s/(c⊗ s)/s s• → s/(c⊗ s), 1) (c s• → c⊗ s, 2)
(•s/(c⊗ s) c⊗ s → s, 2) (s/(c⊗ s) c⊗ s• → s, 1)
(•s/(c⊗ s)/s s → s/(c⊗ s), 2) (•s/(c⊗ s) c⊗ s → s, 3)
(s/(c⊗ s) • c⊗ s → s, 1) (•s/(c⊗ s)/s s → s/(c⊗ s), 3)
(•c s → c⊗ s, 2) (s/(c⊗ s)/s s• → s/(c⊗ s), 0)

(s/(c⊗ s) • c⊗ s → s, 0)
(•c s → c⊗ s, 3)

I4 I5

(c • s → c⊗ s, 3) (s/(c⊗ s)/s • s → s/(c⊗ s), 4)
(c s• → c⊗ s, 3) (•s/(c⊗ s) c⊗ s → s, 5)
(•s/(c⊗ s) c⊗ s → s, 4) (•s/(c⊗ s)/s s → s/(c⊗ s), 5)
(•s/(c⊗ s)/s s → s/(c⊗ s), 4) (s/(c⊗ s)/s s• → s/(c⊗ s), 4)
(s/(c⊗ s) c⊗ s• → s, 0) (s/(c⊗ s) • c⊗ s → s, 4)
(s• → S ′, 0) (•c s → c⊗ s, 5)

I6

(c • s → c⊗ s, 5)
(c s• → c⊗ s, 5)
(•s/(c⊗ s) c⊗ s → s, 6)
(•s/(c⊗ s)/s s → s/(c⊗ s), 6)
(s/(c⊗ s) c⊗ s• → s, 4)
(c s• → c⊗ s, 3)
(s/(c⊗ s) c⊗ s• → s, 0)
(s• → S ′, 0)

Figure 4.8: Parse list for the string [[]][].

Part II

The Non-associative Lambek
Calculus

Chapter 5

Normal Derivations in NL

In this chapter, I present a recognition method for sequents of the non-
associative Lambek calculus based on the construction of normal deriva-

tions.
We will start by restricting the discussion to two-formula sequents. The

problem we are going to deal with can be stated as follows.

- Given a sequent a → c, how do we prove whether `NL a → c ?

The restriction to two-formula sequents indicates that the antecedent structure
is given and expressed, here as in [de Groote, 1999], through the branching of
the product formulas. The problem we are going to address here is substantially
different from the one we addressed in Chapters 3 and 4. In the case of CF or
AB grammars, recognition of a structured sequent is a trivial task. However,
this is not the case for structured sequents of NL: even if the structure is given,
recognition of NL sequents can be computationally more demanding than CF

parsing.
In fact, the application of the rules of the calculus is non-deterministic, and

the different options cannot easily be discarded, as these may become relevant
at later stages of the computation. Consider the following sequent.

(5.1) a/(c/b⊗ b)⊗ (c/b⊗ b) → a

Assume that as soon as we encounter c/b⊗b at the right of the main connective,
we apply the transition c/b ⊗ b → c so that we replace c for that occurrence
of c/b⊗b in a/(c/b⊗b)⊗ (c/b⊗b) → a, obtaining a/(c/b⊗b)⊗ c → a. At
this point we cannot simplify any further. In fact, the sequent in 5.1 is itself
an instance of the scheme x/y ⊗ y → x, and that replacement has excluded
the only possibility of reducing the input sequent. Of course, if we had tried
immediately to apply the pattern x/y⊗ y → x to that sequent, we would have
succeeded. However, this is not always possible, since embedded formulas may
have to be reduced before, in order to make other external patterns available
for reduction. As a sequent of NL may have an exponential number of readings

96

(see Chapter 6), we may easily end up with storing an exponential number
of intermediate results with severe consequences for the efficiency of the proof
search.

In Section 5.3.1, I formulate a new method for automatic construction of
derivations of two-formula sequents. This method is based on the definition
of two simple recursive functions which can be immediately translated into a
functional or a logical program. The recognition procedure works bottom-up, an
aspect that distinguishes it from most theorem provers for logical calculi, based
on non-erasing rules (like the rules of the cut-free sequent calculus) and top-
down proof search. Besides its operations are always simplifying and goal ori-
ented: two aspects that guarantee termination and limit the non-determinism
of the rules. We interpret the task of proving a sequent a → c as that of finding
a formula b such that a and c ‘simplify’ to b. The notion of simplification con-
cerns the length of the formulas involved and will be the central notion of the
procedure. I will define two forms of simplification (or contraction), one from
left to right, which I call reduction and one from right to left, which I call ex-
pansion. The key intuition behind this work is that patterns called expanding,
such as lifting or co-application, are also simplifying, although the direction of
the simplification is the reverse of the arrow symbol.

In order to prove the correctness of the recognition method, we will examine
an important result from [Kandulski, 1988] about the construction of normal
derivations in NL. Kandulski extended to NL the proof of the equivalence
between non-associative Lambek grammars without product and context free
grammars of [Buszkowski, 1986]. Our recognition method shares many features
with Kandulski’s and Buszkowski’s method of normal derivation construction.
However, while in the approach of these authors there can be several equivalent
normal derivations, the derivations constructed in our system are free from
spurious ambiguity, as we will prove in Chapter 6.

The system that I am going to design applies a technique similar to the one
used in [Le Nir, 2004] for the compilation of a non-associative Ajdukiewicz–
Bar-Hillel grammar without product from a non-associative Lambek grammar
without product. Indeed, our method makes it possible to transform the com-
putation of an NL grammar into the computation of an Ajdukiewicz–Bar-Hillel
grammar with product by finite lexical extension, enabling us to indirectly ap-
ply the parsing methods discussed in Chapter 3 to NL grammar, as we will see
in Section 5.4. However, the presence of product formulas makes our formula-
tion capable of handling with full generality proofs of sequents whose structure
is given. We will see also that the method of Le Nir, as it stands, contains
mistakes which I will repair.

With respect to complexity, we will see in Chapter 7 that a simple gener-
alization of the method presented here gives a polynomial algorithm for NL.
Hence, I will provide there a constructive proof of the result of polynomiality
of [de Groote, 1999] and [de Groote and Lamarche, 2002].

Normal Derivations in NL 97

5.1 Alternative formulations of NL

As we said in the introduction, we limit our present discussion to sequents
made of two formulas. Hence, a sequent is a pair of formulas, which we write
a → c. We propose once more NL in a slightly more compact way and without
the lambda terms. The double inference line in the residuation rules, is simply
a shorthand indicating that the rules work in both directions. We call this
axiomatization C, to distinguish it from the others that we will discuss later.

Definition 5.1. The system C.

For a,b and c ranging over formulas, we have

- Identities:
Axioms Cut

a → a
a → b b → c

a → c

- Residuation Rules:

a⊗ b → c

a → c/b

a⊗ b → c

b → a\c

The following are some well known theorems of NL. We label them as AX 0

since they will be important in the construction that follows.

Definition 5.2. For all formulas a and c, let AX 0 be the set consisting of the
axioms:

c/a⊗ a → c a⊗ a\c → c

a → (a⊗ c)/c a → c\(c⊗ a)

a → c/(a\c) a → (c/a)\c

Moreover, we have the following set of derived rules of inference, which we
call M0.

Definition 5.3. For all formulas a and b, we define M0 as the set consisting
of the following rules.

a → a ′

a⊗ b → a ′ ⊗ b
⊗M

b → b ′

a⊗ b → a⊗ b ′
⊗M ′

a ′ → a

b\a ′ → b\a
\M

a ′ → a

a ′/b → a/b
/M

b → b ′

b ′\a → b\a
\M ′ b → b ′

a/b ′ → a/b
/M ′

98 5.1. Alternative formulations of NL

Let us define the set of sequents which can be obtained from AX 0 and the
identity axioms, by means of the rules in M0 and of two special instances of
the cut rule encoded in clause 3 of the following construction. This set will be
used below to give an alternative axiomatization of NL, which is, with some
minor modification the one used by [Kandulski, 1988].

Definition 5.4. Let AX denote the smallest set such that:

1. AX contains the axioms of C and AX 0.

2. AX is closed under rules M0.

3. AX is closed under the following two rules:

a) if a → b ∈ AX , |a| > |b| and b → c ∈ AX , |b| > |c|, then a → c ∈ AX .

b) if a → b ∈ AX , |a| < |b| and b → c ∈ AX , |b| < |c|, then a → c ∈ AX .

Remark 5.1. In [Kandulski, 1988] one finds a similar construction of a set
Ax of axioms. Indeed, our definition of AX results from Kandulski’s Ax set by
adding clause 3. This clause is added to include in the set AX sequents derivable
by monotonous instances of cut, see also [Le Nir, 2004]. This extension does
not affect Kandulski’s argument. Although the difference should be borne in
mind in the definitions and propositions that follow. The advantage of such
an extension will become clear in the proof of the equivalence of Definition 5.9
with the set AX . Roughly, we want to include in this set sequents like, for
instance, a/b → a ′/b ′ obtained by monotonous cut on the premises a/b →
a ′/b and a ′/b → a ′/b ′, since such sequents will be derived without using cut
in Definition 5.9.

Clearly, every sequent in AX can be derived in C. Moreover, we can prove
the following.

Proposition 5.1. [Kandulski, 1988]: Every sequent derivable in C can be
obtained from AX by means of the Cut rule only.

Thus, we can take AX plus cut as an alternative axiomatization of NL,
although we will see in the next section that only one particular instance of cut
is required.

Definition 5.5. Let K be the smallest set such that:

1. K contains AX .

2. K is closed under Cut.

From Proposition 5.1, we know that K is equivalent to C. In the next
section, we will examine the method of [Kandulski, 1988] for the construction
of normal derivations. The construction is based on K. Let us exemplify what
is the advantage of using this axiomatization of NL.

Normal Derivations in NL 99

The reader might have noticed that K would be equivalent to C even without
assuming a → c/(a\c) and its symmetric form as primitive axioms in AX , as
they could be derived.

a → (a⊗ a\c)/(a\c)

a⊗ a\c → c

(a⊗ a\c)/(a\c) → c/(a\c)

a → c/(a\c)

The same holds for whatever is derived by means of \M ′ or of /M ′, as also
these rules could be derived.

a/b ′ → (a/b ′ ⊗ b)/b

b → b ′

a/b ′ ⊗ b → a/b ′ ⊗ b ′ a/b ′ ⊗ b ′ → a

a/b ′ ⊗ b → a

(a/b ′ ⊗ b)/b → a/b

a/b ′ → a/b

On the other hand, “it is expedient to have them”1 in AX . In fact, we will see
in the next section that every sequent a → c provable in C is provable in K by
means of premises a → b and b → c in AX such that |a| > |b| and |c| > |b|.

[Kandulski, 1988] extended the normalization procedure in [Buszkowski,
1986] for NL grammars without product to grammar based on the full non-
associative Lambek calculus with product. The procedure, which we present in
the next section, proves the reducibility of non-associative Lambek grammars
with product formulas to Ajdukiewicz–Bar-Hillel grammars with product for-
mulas, and hence the equivalence of non-associative Lambek grammars with
product and context-free grammars. We will rely on Kandulski’s construction
to prove the correctness of the recognition procedure which we formulate in
Definition 5.9 on page 103 and Proposition 5.8 on page 111. As we said, our
procedure has been suggested by the recursive definition of [Le Nir, 2004] for
the compilation of the AB grammar (without product) inferable from a given
non-associative Lambek grammar without product.

5.2 Normal derivations

Since the method of [Kandulski, 1988] applies to sequents of the form Γ → c,
and we are currently interested only in sequents of the form a → c, we will
consider only a few, relevant, cases of the construction. As we said before,
provability of two formula sequents can be seen as a preliminary issue with
respect to the problem of parsing, that is the problem of finding a proof for a
sequence of input formulas and an output formula.

The basic notions that will accompany us throughout this chapter is that
of expanding and reducing sequents.

1[Kandulski, 1988].

100 5.2. Normal derivations

Definition 5.6. A two-formula sequent a → c from AX is called expanding
(resp. reducing), if |a| < |c| (resp. |c| < |a|).

Observe that all the elements of AX , except the axioms, are either expanding
or reducing.

A derivation of a sequent a → c in K can be seen as a sequence of formulas
x0 . . . xn, which we call derivation list, such that

- x0 = a,

- xn = c and

- for all i, 0 6 i < n, xi → xi+1 ∈ AX .

The “expedient” of Kandulski’s construction is schematically illustrated in the
following remark.

Remark 5.2. The derivation of a sequent a → c in K can be configured as a
derivation list x0 . . . xk . . . xn where

- x0 = a,

- xn = c,

- for all i, 0 6 i < k, xi → xi+1 are reducing patterns from AX and

- for all j, k 6 j < n, xj → xj+1 are expanding patterns from AX .

The main property of AX (which, however, in its original formulation did
not include the sequents obtained by clause 3 in the construction of Definition
5.4) is proved in the following proposition, from [Kandulski, 1988].

Proposition 5.2. Given formulas x, y and z, x 6= z and both x → y and y → z

are in AX , then if x → y and y → z are expanding and reducing, respectively,
then there is a formula y ′ such that |y ′| < |y| and x → y ′ and y ′ → z are in
AX .

Proof. see [Kandulski, 1988] for NL, the proof for the system without product
was given in [Buszkowski, 1986].

Example 5.1. Some relevant instances of the proof of Proposition 5.2 are
given below.

x → y → z y ′

a → (a⊗ a\b)/(a\b) → b/(a\b) b/(a\b)

a → (a⊗ b)/(a\(a⊗ b)) → (a⊗ b)/b (a⊗ b)/b

a⊗ a\b → b/(a\b)⊗ a\b → b a⊗ a\b

Normal Derivations in NL 101

Proposition 5.2 guarantees that every sequent a → c derivable in NL has
a derivation D = x0 . . . xn in K such that no sublist xi−1 xi xi+1, 0 < i < n

of D is such that |xi−1| < |xi| and |xi| > |xi+1|. Hence, normal derivations are
defined as follows.

Definition 5.7. A derivation D = x0 . . . xn of a sequent a → c in K is normal
if and only if for no k, 0 < k < n, there is a sublist xk−1 xk xk+1 of D such
that |xk−1| < |xk| > |xk+1|

2.

Let |x0 . . . xn| = |x0| + . . . + |xn|.

Definition 5.8. A derivation D of a → c in K is minimal if and only if for all
the derivations D ′ of a → c in K, |D| 6 |D ′|.

Remark 5.3. We note that a derivation x0 . . . xn such that for some i, 0 6
i < n, xi ≡ xi+1 cannot be minimal. In fact, whenever a derivation is of the
form x0 . . . xi xi+1 . . . xn with xi ≡ xi+1, we can replace it with x0 . . . xi . . . xn,
obtaining a shorter one.

Proposition 5.3. Each minimal derivation is normal.

Proof. [Kandulski, 1988]: induction on D = x0 . . . xn. Assume that D is mini-
mal. There are two cases:

If xn−1 → xn is expanding, then D is normal by induction hypothesis.

If xn−1 → xn is reducing, one reasons by contraposition.

Given Kandulski’s construction for normal derivations, the process of find-
ing a proof for a sequent a → c can be divided into two subprocesses of con-
traction, as illustrated in Remark 5.2. One from left to right, corresponding
to the process of finding the formula to which the antecedent formula reduces.
And one from right to left, corresponding to the process of finding the formula
which expands to the succedent formula. The advantage of this strategy is
that the two processes proceed in a monotonic decreasing way: every formula
encountered in each process results by application of a transition axioms from
AX , expressing a form of contraction, of the preceding formula, in the reduction
case, or of the following formula, in the expansion case.

Example 5.2. The derivation of the sequent a⊗a\b → c/(b\c) results in the
composition of the two sequents a⊗ a\b → b and b → c/(b\c) from AX . One
has the following derivation list:

a⊗ a\b, b, c/(b\c)

2We used the notation x < y > z for x < y and y > z.

102 5.3. Automatic recognition

5.3 Automatic recognition

In the next sections, we present and discuss our recognition procedure for NL.
We will see that, in fact, it can be seen as an alternative definition of Kandul-
ski’s normal derivations for NL which has, however, many advantages over the
original. In first place, the functions that we present in Definition 5.9 on the
next page can immediately be translated into a functional program that works
efficiently in any practical case (also by using lists in place of sets)3. Secondly,
they can be implemented straightforwardly as a chart algorithm (what we do in
Algorithm 7.1 on page 134). Finally, they do exactly the work that is required,
without redundancies.

In cotrast, the sets AX and K on which Kandulski’s normal derivations
are constructed are infinite and cannot be used straightforwardly to build a
derivation automatically.

In addressing the question of automated theorem proving, some preliminary
issues have to be solved. Among others, the problem of the instantiation of the
axioms and of the transition schemes, and, closely related, the direction of the
proof construction process.

In the search of a proof for a sequent a → c, we use only a finite number of
elements of AX to perform the transitions from a to c and the choice of these
elements is dictated by what a and c look like.

Concerning the direction of the search procedure one may work from the
leaves to the root (bottom-up) or from the root to the leaves (top-down). A
bottom-up search strategy guarantees that every stage of the process will con-
tain only valid sequents. Observe that this is not guaranteed in every top-down
approach, witness

(a/b)\a 6→ b

a/b → a/((a/b)\a)

which is a possible way of unfolding the valid conclusion through /M. There-
fore, our procedure will construct derivations from the leaves to the root, avoid-
ing thus to ever consider invalid sequents.

The key intuition underlying our method is the following. One may observe
that expanding schemes such as lifting, a → b/(a\b), or coapplication, a →
(a⊗b)/b, simplify formulas in the same way as the reducing scheme a⊗a\b →
b does, although in the opposite direction. In the case of a⊗a\b → b one sees b

as the result of contracting a⊗a\b. Instead, in the case of a → b/(a\b) or a →
(a⊗b)/b one can see a as the result of contracting b/(a\b) or (a⊗b)/b. What
we want to emphasize is the fact that expanding patterns can be seen as right-
to-left transition rules, while the reducing patterns as left-to-right transition
rules.

3In Chapter 7, we will discuss this issue in more detail. This claim is justified by the fact
that the functions in Definition 5.9 work efficiently for any kind of formula which can appear
in a realistic categorial lexicon.

Normal Derivations in NL 103

5.3.1 Expansion and reduction

In this section, we present the core routines of our recognition method and
prove their correctness. We define two functions e and r of type F → {F}. To
make more compact the presentation below, we use the construct

let x be v in t

which is another way of expressing the substitution of v for x in t, denoted
before as t[x := v]. Moreover, we label the clauses in the algorithm so as to
simplify reference to them in the proofs which follow. To avoid any possible
source of misunderstanding, subclauses (a), (b) and (c) in clause 3) and 2’) are
interleaved by union, ∪.

Definition 5.9. The functions expand, e, and reduce, r (we omitted the sym-
metric cases):

1) e(a) = {a}, if a is an atom

2) e(a⊗ b) = { a ′ ⊗ b ′ | a ′ ∈ e(a) & b ′ ∈ e(b) }

3) e(a/b) = let mon be { a ′/b ′ | a ′ ∈ e(a) & b ′ ∈ r(b) } in
(a) mon

∪
(b) { c | (c⊗ b ′)/b ′ ∈ mon }

∪
(c) { c | a ′/(c\a ′) ∈ mon }

1’) r(a) = {a}, if a is an atom

2’) r(a⊗ b) = let mon be { a ′ ⊗ b ′ | a ′ ∈ r(a) & b ′ ∈ r(b) } in
(a) mon

∪
(b) { c | c/b ′ ⊗ b ′ ∈ mon }

∪
(c) { c | a ′ ⊗ a ′\c ∈ mon }

3’) r(a/b) = { a ′/b ′ | a ′ ∈ r(a) & b ′ ∈ e(b) }

Observe that the sets e(x) and r(x) are finite for every formula x as all their
elements are shorter than x or identical to x. Let us show some examples of
the way these functions work.

Example 5.3. We calculate reduction and expansion of some formulas showing
the trace of the recursion as a tree.

104 5.3. Automatic recognition

r((s/(n\s))\s):

r(s) = {s}

e(s) = {s}

r(s) = {s} e(n) = {n}

r(n\s) = {n\s}

e(s/(n\s)) = {s/(n\s), n}

r((s/(n\s))\s) = {(s/(n\s))\s, n\s}

e((s/(n\s))\s):

e(s) = {s}

r(s) = {s}

e(s) = {s} r(n) = {n}

e(n\s) = {n\s}

r(s/(n\s)) = {s/(n\s)}

e((s/(n\s))\s) = {(s/(n\s))\s, n\s}

r((a⊗ a\c)/b⊗ b):

r(a) = {a}

r(c) = {c} e(a) = {a}

r(a\c) = {a\c}

r(a⊗ a\c) = {a⊗ a\c, c} e(b) = {b}

r((a⊗ a\c)/b) = {(a⊗ a\c)/b, c/b} r(b) = {b}

r((a⊗ a\c)/b⊗ b) = {(a⊗ a\c)/b⊗ b, c/b⊗ b, a⊗ a\c, c}

We may observe that for each of these examples, the following two condi-
tionals hold:

1. If x ∈ e(y), then x → y ∈ AX and |x| < |y| or x ≡ y.

2. If y ∈ r(x), then x → y ∈ AX and |x| > |y| or x ≡ y.

We refer to these two statements as to soundness of Definition 5.9 and we prove
them in Proposition 5.5. We will see that also the converse statements hold,
namely

1. If x → y ∈ AX and |x| < |y| or x ≡ y, then x ∈ e(y).

2. If x → y ∈ AX and |x| > |y| or x ≡ y, then y ∈ r(x).

We refer to these two statements as to completeness of Definition 5.9 and we
prove them in Proposition 5.6.

Finally, by correctness of Definition 5.9, we mean that it is both sound and
complete.

Correctness of Definition 5.9

The functions in Definition 5.9 are recursive functions. Inferences are drawn
from the premises to the conclusion as a result of recursion: a complex problem,
represented by a non-atomic input formula, is divided into two subproblems.

Normal Derivations in NL 105

Atoms are the trivial solutions, that is the leaves of the search, or proof, tree.
The sets of solutions for the subproblems provide the premises for the solution
of the problem.

Before proving correctness of Definition 5.9 we add the following remark.

Remark 5.4. The reader may have noticed that subclauses (b) and (c) in 3)
and 2’) do not compute the closure of the set mon under pattern contraction.
In other words, if some of the c formulas returned, for instance, by clause 3b) or
3c) is itself of the form (y⊗ x)/x or x/(y\x), no further contraction is applied.
This is a very pleasant property of Definition 5.9 as we will see in the next
pages that in fact this is enough to guarantee completeness of the definition.
In Chapter 6, we will see that computing the closure of the set mon under
pattern contraction would give rise to redundancies.

In order to make the following discussion more compact and more clear, let
us introduce the following abbreviations.

Notation 5.1. Let AX be the set of sequents in Definition 5.4. We adopt the
following notational conventions.

x
e→ y := x → y ∈ AX and |x| < |y| or x ≡ y.

x
r→ y := x → y ∈ AX and |x| > |y| or x ≡ y.

We now proceed to prove the correctness of Definition 5.9, which we may
state as follows.

- x ∈ e(y) if and only if x
e→ y.

- y ∈ r(x) if and only if x
r→ y.

We refer to the ‘if’ direction as completeness and to the ‘only if’ direction as
soundness. In each case of the following analyses, we omit the symmetric cases.
We start by proving the identity case.

Proposition 5.4. For all x, x ∈ r(x) and x ∈ e(x).

Proof. Induction on x. If x is atomic, then x ∈ r(x) and x ∈ e(x). Otherwise
x ≡ y]z,] ∈ {⊗, /, \}. By IH, y ∈ r(y) and y ∈ e(y), and z ∈ r(z) and z ∈ e(z),
we conclude y]z ∈ r(y]z) and y]z ∈ e(y]z).

Soundness of Definition 5.9 is proved as follows.

Proposition 5.5. Soundness:

(A) If y ∈ r(x), then x
r→ y.

(B) If y ∈ e(x), then y
e→ x.

Proof. Induction on x. If x is atomic, we have x
r→ x and x

e→ x by clause 1)
of Def. 5.4. Otherwise we have the following cases.

106 5.3. Automatic recognition

Proof of (A):

1. If x ≡ x ′ ⊗ x ′′, we have the following subcases for y:

a) y ≡ y ′ ⊗ y ′′, with y ′ ∈ r(x ′) and y ′′ ∈ r(x ′′). By IH, x ′
r→ y ′ and

x ′′
r→ y ′′. By clause 2) of Def. 5.4, we have x ′ ⊗ x ′′

r→ y ′ ⊗ x ′′ and
y ′ ⊗ x ′′

r→ y ′ ⊗ y ′′. Hence, x ′ ⊗ x ′′
r→ y ′ ⊗ y ′′ by clause 3a) of Def.

5.4.

b) Otherwise y/z⊗ z ∈ r(x ′⊗ x ′′), with y/z ∈ r(x ′) and z ∈ r(x ′′). We
obtain x ′ ⊗ x ′′

r→ y/z ⊗ z like in the previous case. Since we have
y/z ⊗ z

r→ y by clause 1) of Def. 5.4, we conclude x ′ ⊗ x ′′
r→ y by

clause 3a) of Def. 5.4.

2. If x ≡ x ′/x ′′, then y ≡ y ′/y ′′, with y ′ ∈ r(x ′) and y ′′ ∈ e(x ′′). By IH,
x ′

r→ y ′ and y ′′
e→ x ′′. By clause 2) of Def. 5.4, we have x ′/x ′′

r→ y ′/x ′′

and y ′/x ′′
r→ y ′/y ′′. Hence, x ′/x ′′

r→ y ′/y ′′ by clause 3a) of Def. 5.4.

Proof of (B):

1. If x ≡ x ′⊗x ′′, then y ≡ y ′⊗y ′′, with y ′ ∈ e(x ′) and y ′′ ∈ e(x ′′). By IH,
y ′

e→ x ′ and y ′′
r→ x ′′. By clause 2) of Def. 5.4, we have y ′⊗y ′′

e→ y ′⊗x ′′

and y ′ ⊗ x ′′
e→ x ′ ⊗ x ′′. Hence, y ′ ⊗ y ′′

e→ x ′ ⊗ x ′′ by clause 3b) of Def.
5.4.

2. If x ≡ x ′/x ′′, then we have the following subcases for y:

a) y ≡ y ′/y ′′, with y ′ ∈ e(x ′) and y ′′ ∈ r(x ′′). By IH, y ′
e→ x ′ and

x ′′
r→ y ′′. By clause 2) of Def. 5.4, we have y ′/y ′′

e→ x ′/y ′′ and
x ′/y ′′

e→ x ′/x ′′. Hence, y ′/y ′′
e→ x ′/x ′′ by clause 3b) of Def. 5.4.

b) Let (y ⊗ v)/v ∈ e(x ′/x ′′), with y ⊗ v ∈ e(x ′) and v ∈ r(x ′′). We
obtain (y⊗ v)/v

e→ x ′/x ′′ like in the previous case. By clause 1) of
Def. 5.4, y

e→ (y ⊗ v)/v. We conclude y
e→ x ′/x ′′ by clause 3b) of

Def. 5.4.

c) Otherwise, let v/(y\v) ∈ e(x ′/x ′′), with v ∈ e(x ′) and y\v ∈ r(x ′′).
We obtain v/(y\v)

e→ x ′/x ′′ like in case 2a. By clause 1) of Def.
5.4, y

e→ v/(y\v). Hence, y
e→ x ′/x ′′ by clause 3b) of Def. 5.4.

Completeness of Definition 5.9 is proved as follows.

Proposition 5.6. Completeness:

(A) If x
r→ y, then y ∈ r(x).

(B) If y
e→ x, then y ∈ e(x).

Normal Derivations in NL 107

Proof. Induction on the AX derivation. If x ≡ y, then (A) and (B) hold by
Prop. 5.4. Otherwise:

Proof of (A):

1. x
r→ y ≡ b/a ⊗ a → b. By Prop. 5.4, b/a ⊗ a ∈ r(b/a ⊗ a). Hence

b ∈ r(b/a⊗ a) by clause 2’b) of Def. 5.9.

2. x
r→ y is obtained by clause 2) of Def. 5.4. We have the following

subcases.

a) x
r→ y ≡ a/b

r→ a ′/b and a
r→ a ′. By IH, a ′ ∈ r(a). By Prop. 5.4,

b ∈ e(b). Hence, a ′/b ∈ r(a/b) by clause 3’) of Def. 5.9.

b) The other cases in which x
r→ y is obtained by rules in M0 are

similar and we omit them.

3. x
r→ y is obtained by clause 3a) of Def. 5.4. We shall consider the

following subcases.

a)
x ′

r→ y ′

x ′/x ′′
r→ y ′/x ′′

y ′′
e→ x ′′

y ′/x ′′
r→ y ′/y ′′

x ′/x ′′
r→ y ′/y ′′

By IH, y ′ ∈ r(x ′) and y ′′ ∈ e(x ′′). Then, by clause 3’) of Def. 5.9,
y ′/y ′′ ∈ r(x ′/x ′′).

b) The following case is resolved like case 3a:

y ′′
e→ x ′′

x ′/x ′′
r→ x ′/y ′′

x ′
r→ y ′

x ′/y ′′
r→ y ′/y ′′

x ′/x ′′
r→ y ′/y ′′

c)
x ′

r→ y ′

x ′ ⊗ x ′′
r→ y ′ ⊗ x ′′

x ′′
r→ y ′′

y ′ ⊗ x ′′
r→ y ′ ⊗ y ′′

x ′ ⊗ x ′′
r→ y ′ ⊗ y ′′

By IH, y ′ ∈ r(x ′) and y ′′ ∈ r(x ′′). Then, by clause 2’a) of Def. 5.9,
y ′ ⊗ y ′′ ∈ r(x ′ ⊗ x ′′).

d) The following case is resolved like case 3c:

x ′′
r→ y ′′

x ′ ⊗ x ′′
r→ x ′ ⊗ y ′′

x ′
r→ y ′

x ′ ⊗ y ′′
r→ y ′ ⊗ y ′′

x ′ ⊗ x ′′
r→ y ′ ⊗ y ′′

108 5.3. Automatic recognition

e)
x ′

r→ y/z

x ′ ⊗ x ′′
r→ y/z⊗ x ′′

x ′′
r→ z

y/z⊗ x ′′
r→ y/z⊗ z

x ′ ⊗ x ′′
r→ y/z⊗ z y/z⊗ z

r→ y

x ′ ⊗ x ′′
r→ y

By IH, y/z ∈ r(x ′) and z ∈ r(x ′′). Then, by clause 2’a) of Def. 5.9,
y/z⊗ z ∈ r(x ′ ⊗ x ′′) and by clause 2’b) y ∈ r(x ′ ⊗ x ′′).

f) The following case is resolved like case 3e.

x ′′
r→ z

x ′ ⊗ x ′′
r→ x ′ ⊗ z

x ′
r→ y/z

x ′ ⊗ x ′′
r→ y/z⊗ x ′′

x ′ ⊗ x ′′
r→ y/z⊗ z y/z⊗ z

r→ y

x ′ ⊗ x ′′
r→ y

g) Suppose that x
r→ y ∈ AX 0 and y

r→ z ∈ AX 0. Then x
r→ z ∈ AX .

For instance,

(c/b⊗ b)/a⊗ a → c/b⊗ b c/b⊗ b → c

(c/b⊗ b)/a⊗ a → c

Then, let x[y := z] be the result of substituting z for y in x (for
instance, ((c/b ⊗ b)/a ⊗ a)[c/b ⊗ b := c] = c/a ⊗ a)4. Then x

r→
x[y := z] 6∈ AX 0 and x[y := z]

r→ z ∈ AX 0. Thus one may apply case
3e.

h) Finally, suppose that x ′ ⊗ x ′′
r→ y, derived as in case 3e, is the left

premise and y
r→ v ∈ AX 0 is the right premise. Then, the analysis of

case 3g shows that there is another derivation of x ′ ⊗ x ′′
r→ v/z⊗ z

and v/z⊗ z
r→ v ∈ AX 0, to which case 3e applies.

Proof of (B):

1. y
e→ x ≡ a

e→ (a⊗ b)/b. By Prop. 5.4, (a⊗ b)/b ∈ e((a⊗ b)/b). Hence
a ∈ e((a⊗ b)/b) by clause 3b) of Def. 5.9.

2. y
e→ x ≡ a

e→ b/(a\b). By Prop. 5.4, b/(a\b) ∈ e(b/(a\b)). Hence
a ∈ e(b/(a\b)) by clause 3c) of Def. 5.9.

3. y
e→ x is obtained by clause 2) of Def. 5.4. We have the following

subcases.
4We refer to Proposition 6.1 in Chapter 6 for the exact definition of this form of substitu-

tion which replaces only a precise subformula occurrence, which we call there inner formulas.
For instance, (a/a ⊗ a)[a := b] = b/a ⊗ a, ((a ⊗ a)/a)[a := b] = (b ⊗ a)/a and
(a/(a\a))[a := b] = a/(b\a).

Normal Derivations in NL 109

a) y
e→ x ≡ a ′/b

e→ a/b and a ′
e→ a. By IH, a ′ ∈ e(a). By Prop. 5.4,

b ∈ r(b). Hence, a ′/b ∈ e(a/b) by clause 3a) of Def. 5.9.

b) The other cases in which x
e→ y is obtained by rules in M0 are

similar and we omit them.

4. y
e→ x is obtained by clause 3b) of Def. 5.4. These cases are dual to

those considered in case 3 in the proof of the (A) statement. Therefore
we consider only a few subcases.

a)
y ′

e→ x ′

y ′ ⊗ y ′′
e→ x ′ ⊗ y ′′

y ′′
e→ x ′′

x ′ ⊗ y ′′
e→ x ′ ⊗ x ′′

y ′ ⊗ y ′′
e→ x ′ ⊗ x ′′

By IH, y ′ ∈ e(x ′) and y ′′ ∈ e(x ′′). Then, by clause 2) of Def. 5.9,
y ′ ⊗ y ′′ ∈ e(x ′ ⊗ x ′′).

b)
y ′

e→ x ′

y ′/y ′′
e→ x ′/y ′′

x ′′
r→ y ′′

x ′/y ′′
e→ x ′/x ′′

y ′/y ′′
e→ x ′/x ′′

By IH, y ′ ∈ e(x ′) and y ′′ ∈ r(x ′′). Then, by clause 3a) of Def. 5.9,
y ′/y ′′ ∈ e(x ′/x ′′).

c)

y
e→ (y⊗ z)/z

y⊗ z
e→ x ′

(y⊗ z)/z
e→ x ′/z

x ′′
r→ z

x ′/z
e→ x ′/x ′′

(y⊗ z)/z
e→ x ′/x ′′

y
e→ x ′/x ′′

By IH, y⊗ z ∈ e(x ′) and z ∈ r(x ′′). Then, by clause 3a) of Def. 5.9,
(y⊗ z)/z ∈ e(x ′/x ′′) and by clause 3a) y ∈ e(x ′/x ′′).

d)

y
e→ z/(y\z)

x ′′
r→ y\z

z/(y\z)
e→ z/x ′′

z
e→ x ′

z/x ′′
e→ x ′/x ′′

z/(y\z)
e→ x ′/x ′′

y
e→ x ′/x ′′

By IH, z ∈ e(x ′) and y\z ∈ r(x ′′). Then, by clause 3a) of Def. 5.9,
z/(y\z) ∈ e(x ′/x ′′) and by clause 3c) y ∈ e(x ′/x ′′).

110 5.3. Automatic recognition

e) Suppose that z
e→ y ∈ AX 0 and y

e→ x ∈ AX 0. Then z
r→ x ∈ AX .

For instance,

c → (c⊗ b)/b (c⊗ b)/b → a/(((c⊗ b)/b)\a)

c → a/(((c⊗ b)/b)\a)

Then, let x[y := z] be the result of substituting z for y in x (for
instance, (a/(((c ⊗ b)/b)\a))[(c ⊗ b)/b := c] = a/(c\a)). Then
z

e→ x[y := z] ∈ AX 0 and x[y := z]
e→ x 6∈ AX 0. Thus one may apply

one of the previous cases.

f) Finally, suppose that y
e→ x ′/x ′′, derived as in case 4c (resp. as in

case 4d), is the right premise and v
e→ y ∈ AX 0 is the left premise.

Then, the analysis of case 4e shows that there is another derivation
of v

e→ (v ⊗ z)/z ∈ AX 0 (resp. of v
e→ z/(v\z) ∈ AX 0) and of

(v ⊗ z)/z
e→ x ′/x ′′ (resp. of z/(v\z)

e→ x ′/x ′′), to which case 4c
(resp. case 4d) applies.

We have proved the equivalence of the set of reducing, expanding and iden-
tity sequents of AX with the sets generated by r and e from Definition 5.9. By
construction, AX is closed under monotonous cut. In turn, we have that, if
y ∈ w(x) and z ∈ w(y), then z ∈ w(x), where w ∈ {e, r}. We express this as
follows.

Proposition 5.7.

If y ∈ r(x), then r(y) ⊆ r(x).

If y ∈ e(x), then e(y) ⊆ e(x).

Proof. This follows from Proposition 5.5 and Proposition 5.6. However, we
examine one non trivial case, as this proposition also justifies Remark 5.4 on
page 105.

Assume that a/((b/(c\b))\a) ∈ e(x). We know from Proposition 5.5 that
a/((b/(c\b))\a)

e→ x. Then we have also b/(c\b)
e→ x and c

e→ x by
monotonous cut. On the other hand, as we observed in Remark 5.4, only
one cut is applied for each pattern of Def. 5.9. Thus one may suspect that
c /∈ e(x). However, if a/((b/(c\b))\a) ∈ e(x), then for some x ′ such that
x ≡ y/(x ′\y ′), a

e→ y and y ′
r→ a, we have b/(c\b) ∈ e(x ′), hence c ∈ e(x ′)

by clause 3c) of Def. 5.9. Thus, also a/(c\a) ∈ e(x), by clause 3a), since
a ∈ e(y) and a ∈ r(y ′) by IH. Hence c ∈ e(x) by clause 3c) of Def. 5.9. The
reader is also referred to the third of the examples in 5.3 on page 103 for a
similar case.

The other cases are similar and we omit them.

Normal Derivations in NL 111

We now give the connection between the two sets generated by the functions
e and r to provability in general. As we know that a sequent a → c is provable
in NL if and only if it has a normal derivation in K and that a normal derivation
(or deduction) is structured, roughly5, as

a
r→ b b

e→ c
a → c

we state the following result.

Proposition 5.8.

`NL a → c iff r(a) ∩ e(c) 6= ∅.

Proof.

If part: Let b ∈ r(a) ∩ e(c). Then b ∈ r(a) and b ∈ e(c). Hence a
r→ b and

b
e→ c, by Prop. 5.5.

Only if part: If `NL a → c, then there is a normal derivation of x0 . . . xk . . . xn,
such that a = x0, c = xn and for all i, 0 6 i < k, xi

r→ xi+1, and for all
j, k 6 j < n, xj

e→ xj+1. By Prop. 5.6 and Prop. 5.7, xk ∈ r(x0) and
xk ∈ e(xn).

Example 5.4.

We prove that `NL a⊗ a\b → c/(b\c) as follows.

r(a⊗ a\b) ∩ e(c/(b\c)) = {a⊗ a\b, b} ∩ {c/(b\c), b} = {b}

Similarly, from Example 5.3 on page 103, by application of Prop. 5.8 we can
conclude:

r((s/(n\s))\s) ∩ e((s/(n\s))\s) =

{(s/(n\s))\s, n\s} ∩ {(s/(n\s))\s, n\s} =

{(s/(n\s))\s, n\s}

5.3.2 Remarks on expansion and reduction

[Le Nir, 2004] presents recursive functions for the generation of what we called
expansion and reduction sets which may seem to resemble our definitions. Le
Nir worked on the product free fragment of NL. Let us discuss here his def-
inition to show that in fact there are some remarkable differences with our
construction.

5We observed that the case in which one of the premises is an identity should be excluded.

112 5.3. Automatic recognition

Definition 5.10. [Le Nir, 2004]: expansion and reduction operations for the
product free fragment of NL (symmetric cases omitted and some irrelevant
notational changes).

E(a) = {a}, if a is an atom
R(a) = {a}, if a is an atom

R(a/b) = { a ′/b ′ | a ′ ∈ R(a) & b ′ ∈ E(b) }

E(a/b) = { a ′/b ′ | a ′ ∈ E(a) & b ′ ∈ R(b) }

∪
{ z | b ≡ x\c & z ∈ E(x) & a ∈ R(c) ∨ a ∈ E(c) }

Observe that the second clause of E(a/b), which is in fact ambiguous, ad-
mits a formula x in the expansion set of z/(x\y), if z is in the expansion
set of y. Thus, for instance, x ∈ E(z/(x\(y/(z\y)))). On the other hand
x → z/(x\(y/(z\y))) is not a valid sequent, as the reader can easily verify.
Indeed, Le Nir’s arguments involving expanding patters are rather confusing:
in many places he seems to write x ∈ E(y) meaning y ∈ E(x). On the other
hand, he explicitly states that b ∈ E(a/(b\a)). The same observations hold for
[Le Nir, 2003b]. Thus one shall expect overgeneration by Le Nir’s method for
the compilation of an AB grammar out of an NL grammar without product.
From Definition 5.9, one can easily recover the product-free cases.

Interpolation

We observe that in the proof of a sequent a → c according to the method in
Proposition 5.8, all the formulas b in e(a) ∩ r(c) are interpolants in the sense
of [Roorda, 1991, 1994]. This means that every atom occurring with polarity
p in b also occurs with polarity p in a and in c. We refer also to [Retoré, 2005]
for a detailed analysis of interpolation in the associative Lambek calculus. In
Chapter 7, we will see how to constrain the search of interpolants to subformulas
of the input sequent.

5.3.3 Extensions

An immediate extension of the expansion and reduction procedures is the appli-
cation to the unary operators of [Moortgat, 1997]. The set AX can be extended
to include the axioms and rules for the diamond and box operators.

a → 2♦a ♦2a → a

a → c
2a → 2c 2M

a → c
♦a → ♦c

♦M

In turn, Definition 5.9 can be extended to deal with the unary operators by
just adding the clauses in Figure 5.1 on the next page.

Normal Derivations in NL 113

e(♦a) = { ♦a ′ | a ′ ∈ e(a) }

e(2a) = let mon be { 2a ′ | a ′ ∈ e(a) } in
mon

∪
{ c | 2♦c ∈ mon }

r(♦a) = let mon be { ♦a ′ | a ′ ∈ r(a) } in
mon

∪
{ c | ♦2c ∈ mon }

r(2a) = { 2a ′ | a ′ ∈ r(a) }

Figure 5.1: Expansion and reduction for unary opeartors

5.3.4 The underlying deductive system

In Definition 5.9 and Proposition 5.8, we implicitly made use of transition
schemes and inference rules which can be used to formulate a new axiomati-
zation of NL. We call this deductive system ER and we will use it also in the
following chapters.

Definition 5.11. The system ER.

- Identities:
Axioms Cut

a → a
a → b b → c

a → c

- Unary Rules

Application:
a → b⊗ b\c

a → c
a → c/b⊗ b

a → c

Lifting:
(b/a)\b → c

a → c
b/(a\b) → c

a → c

Coapplication:
b\(b⊗ a) → c

a → c
(a⊗ b)/b → c

a → c

114 5.4. Connection to parsing

- Binary Rules:

Product Rule:
a → a ′ b → b ′

a⊗ b → a ′ ⊗ b ′

Monotonicity:
a ′ → a b → b ′

b ′\a ′ → b\a

a ′ → a b → b ′

a ′/b ′ → a/b

The unary extension of Definition 5.9 gives rise to the following deduction
rules.

Definition 5.12. Rules for unary operators:

Contraction Rules
2♦a → c

a → c
a → ♦2c

a → c

Monotonicities
a → c

2a → 2c
a → c

♦a → ♦c

5.4 Connection to parsing

Although Definition 5.9 provides a recognition procedure for two-formula se-
quents, the method can be easily generalized to the more general problem of
parsing, or more precisely of the recognition of sequents a1, . . . ,an → c whose
antecedent structure is not given.

The result in [Kandulski, 1988] of equivalence of NL grammars and CF

grammars relies on the reducibility of an NL grammar into an AB grammar
with product. In the present setting, we can state the reducibility of NL com-
putations to AB⊗ computations as follows (see also [Buszkowski, 1997]).

Proposition 5.9. If a1, . . . ,an → c is provable in NL, then there are formulas
bi, 1 6 i 6 n, such that bi ∈ r(ai), and a formula b ′, such that b ′ ∈ e(c), and
b1, . . . ,bn → b ′ is derivable only by means of the rules of AB⊗.

More in general, the expansion and reduction operations can be used to
transform a NL grammar into an AB⊗ grammar as follows.

Proposition 5.10. From a NL categorial grammar G = 〈Vt, s,Lex,NL〉, we
compute an AB grammar G ′ = 〈Vt, s,Lex ′,AB⊗〉 where

Lex ′ = { w → x ′ | w → x ∈ Lex, x ′ ∈ r(x) }

such that Lt(G) = Lt(G
′).

Example 5.5. Let us use starred variables for symbols in Vt and write x →
y1 | . . . | yn for x → y1, . . . , x → yn.

Normal Derivations in NL 115

A6 is the NL grammar with the following lexicon:

n? → n | s/(n\s) | tv\(s/(n\s))\s | (s/(n\s)⊗ tv)\s

tv? → tv

hv? → (s/(n\s))\s

Lexical expansion, according to Proposition 5.10, of grammar A6 gives the AB⊗

grammar whose lexicon is the following.

n? → n | s/(n\s) | tv\(s/(n\s))\s | tv\n\s | (s/(n\s)⊗ tv)\s | (n⊗ tv)\s

tv? → tv

hv? → (s/(n\s))\s | n\s

Thus the parsing methods developed in Chapter 3 can be immediately ap-
plied to the resulting grammar.

5.5 Conclusion

We started this chapter by discussing Buszkowski’s and Kandulski’s method for
the construction of normal derivations. Then I defined two recursive functions,
called e and r, which generate respectively the set of expanding and the set of
reducing sequents of Kandulski’s construction6. I used these two functions to
define a recognition method for two formula sequents and a lexical compilation
transforming an NL grammar into an AB⊗ grammar.

In Chapter 6, I will investigate the issue of ambiguity of normal derivations.
Chapter 7 examines the complexity of the expansion and reduction proce-

dure. We will observe that the complexity of an algorithm based on Definition
5.9 is exponential and will design a new algorithm, closely related to the first,
which recognizes valid sequents of NL in polynomial time.

6To be precise, these functions generate sets of formulas. However, we have that a ∈ e(c)
if and only if a → c is an expanding (or identity) sequent and c ∈ r(a) if and only if a → c
is a reducing (or identity) sequent, in Kandulski’s sense.

Chapter 6

Normal Derivations and
Ambiguity

Proposition 5.8 on page 111 provides a simple and elegant method for
proving two-formula sequents. The proof of correctness of this method has

been based on the results of [Buszkowski, 1986] and [Kandulski, 1988] on normal
derivations in NL. We proved the equivalence of our recursive functions e and
r in Definition 5.9 with Kandulski’s characterization of the sets of expanding
and reducing sequents of NL.

In this chapter, I show that while the functions in Definition 5.9 do the
same job as Kandulski’s construction, in fact they do it better. In the first
place, this should already be clear, because Definition 5.9 and Proposition 5.8
represent, in fact, a recognition algorithm. Secondly, and this is the central
topic of this chapter, because our recognition method is not affected by the
problem of spurious ambiguity. We mentioned before that normal in the sense
of [Buszkowski, 1986] and [Kandulski, 1988], does not imply uniqueness since
we may have several equivalent derivations of the same two-formula sequent
according to Kandulski’s method1. Instead, the recursive functions e and r in
Definition 5.9 return exactly one deduction for every semantic reading that a
sequent may have, as I prove in Section 6.1. Thus, the method we designed in
Proposition 5.8 for proving two formula sequents is a redundancy-free theorem
prover.

I will address also a second problem, which can be stated as follows.

- Given a provable sequent a → c, how many proofs, that is how many
different semantic readings, may this sequent have?

This question has been previously addressed in [van Benthem, 1991] and [Tiede,
1999a] and represents an important issue for proof theoretic grammars. In

1Indeed, uniqueness was not a concern for these authors. [Buszkowski, 1997] simply
states that “each proof can be reduced to a normal form which has some nice computational
features”. Cursive mine.

118 6.1. Eliminating redundancies

[van Benthem, 1991], one finds the discussion of the problem of providing “an
explicit function computing numbers of non-equivalent readings for sequents in
the Lambek calculus”2. I present such an “explicit function” for NL sequents.
The only parameter of the function is the length of the input sequent. While van
Benthem and later [Tiede, 1999a] prove the so called finite reading property for
sequents of the Lambek calculus (with permutation), in Section 6.2, I establish
a direct link between the length of an NL sequent and the binomial coefficient.

6.1 Eliminating redundancies

The reader may have observed that Kandulski’s notion of normal derivation
does not imply uniqueness. Consider the following examples.

(6.1) (a⊗ a\c)/b⊗ b, c/b⊗ b, c

(6.2) (a⊗ a\c)/b⊗ b, a⊗ a\c, c

These two derivations have the same length. Moreover, no shorter derivation
is available for the sequent (a⊗a\c)/b⊗b → c. Thus, they are both minimal,
hence normal by Proposition 5.3. However, while distinct, these derivations are
also in some sense equivalent. We have seen in Chapter 2 that in the case of CF

grammars (as well as for basic categorial grammars), the structural description
represents a criterion of equivalence among different derivations. In the case
of NL derivations, however, as well as for other logical systems, the problem
of equivalence is more subtle and deep. In order to express more clearly the
problem of derivational ambiguity in NL, we use the lambda term semantics of
derivations. This will allow us to define equivalence of different NL derivations
of the same sequent.

Let us assign to each axiom and rule that we used in the construction in
Definition 5.4 and in Definition 5.5 on page 98 a lambda term. Instead of
λxλy.t we write λxy.t.

Definition 6.1. The extended system K ′ is the closure of AX ′ under labeled
cut

u : a → b v : b → c

λx.(v (u x)) : a → c

where AX ′ is defined as AX in Definition 5.4 but on the basis of the extended
axioms AX ′0 and inference rules M ′0 given below3.

2Cursive mine. The quotation of [van Benthem, 1991] is taken from [Tiede, 1999a] who
quotes the American edition of the book.

3The monotonous cut of clause 3) of Definition 5.4 are special cases of the labeled cut
rule.

Normal Derivations and Ambiguity 119

- AX ′0:

λx.x : a → a

λx.(π2x π1x) : b⊗ b\c → c λx.(π1x π2x) : c/b⊗ b → c

λxy.(y x) : a → (b/a)\b λxy.(y x) : a → b/(a\b)

λxy.〈y, x〉 : a → b\(b⊗ a) λxy.〈x, y〉 : a → (a⊗ b)/b

- M ′0:

u : a → a ′

λx.〈(u π1x),π2x〉 : a⊗ b → a ′ ⊗ b

v : b → b ′

λx.〈π1x, (v π2x)〉 : a⊗ b → a⊗ b ′

u : a ′ → a

λxy. (u (x y)) : b\a ′ → b\a

u : a ′ → a

λxy. (u (x y)) : a ′/b → a/b

v : b → b ′

λxy. (x (v y)) : b ′\a → b\a

v : b → b ′

λxy. (x (v y)) : a/b ′ → a/b

A derivation list of a sequent a → c in K ′ with semantic annotation is a
pair of a lambda term and of a list of formulas, which we write as

λx.(fn−1 (fn−2 . . . (f1 x))) : a1 . . .an

such that a = a1 and c = an and for all i, 1 6 i < n, fi : ai → ai+1 ∈ AX ′.
The construction of Kandulski’s normal derivations in Chapter 5 can be

rephrased to work with the arrows given above in a straightforward way. The
lambda terms will play a role only in telling us which derivations are equivalent.
Let us define equivalence among normal derivations.

Definition 6.2. Let D1 and D2 be two semantically annotated normal deriva-
tions of a sequent a → c. Let t1 and t2 be the normal form lambda terms
associated to D1 and D2, respectively. Then D1 is equivalent to D2 if and only
if t1 ≡ t2.

Someone might object that in system K ′ the symmetric variants of all
axioms and rules in which only slashes appear receive the same semantic
annotation. Of course, we could have used directional lambda terms as in
[Buszkowski, 1987] and [Hepple, 1994]. However, for our purposes this is not
necessary. For instance, the trivial derivations λxy.(y x) : a → (b/a)\b and
λxy.(y x) : a → b/(a\b) are not equivalent, as they are not two derivations
of the same sequent (as a → (b/a)\b 6= a → b/(a\b)). A similar argument
applies to what is deduced from the rules of inferece.

Let us consider the previous example of spurious ambiguity, this time with
term labeling and in tree format. For reasons of space, we represent cuts as
unary rules, in a way similar to the system ER.

120 6.1. Eliminating redundancies

Example 6.1. Redundancies:

(6.3) Labeled deduction corresponding to derivation 6.1:

λx.(π1x π2x) : a⊗ a\c → c

λxy.(π2(x y) π1(x y)) : (a⊗ a\c)/b → c/b

λx.〈λ y.(π2(π1x y) π1(π1x y)),π2x〉 : (a⊗ a\c)/b⊗ b → c/b⊗ b

λx.(π2(π1x π2x) π1(π1x π2x)) : (a⊗ a\c)/b⊗ b → c

(6.4) Labeled deduction corresponding to derivation 6.2:

λx.(π1x π2x) : (a⊗ a\c)/b⊗ b → a⊗ a\c

λx.(π2(π1x π2x) π1(π1x π2x)) : (a⊗ a\c)/b⊗ b → c

The term in the conclusion of the two deductions is indeed the same, hence
the two deductions are equivalent.

The previous example shows that Kandulski’s method of constructing nor-
mal derivations is not exempt from redundancies. There is in fact another case
in which we may derive the same sequent in two equivalent ways. Consider the
following example.

Example 6.2. Further redundancies: the following two deductions are equiv-
alent.

1.
v : a → a ′

λxy.(v (x y)) : a/b → a ′/b

u : b ′ → b

λxy.(x (u y)) : a ′/b → a ′/b ′

λxy.(v (x (u y))) : a/b → a ′/b ′

2.
u : b ′ → b

λxy.(x (u y)) : a/b → a/b ′
v : a → a ′

λxy.(v (x y)) : a/b ′ → a ′/b ′

λxy.(v (x (u y))) : a/b → a ′/b ′

The choice of which derivations are redundant is, to some extent, arbitrary.
In the case of Example 6.2 there seem to be no criterion to chose one deduction
rather than the other. However, both these deductions are instances of a more
general schema, which is the following:

v : a → a ′ u : b ′ → b

λxy.(v (x (u y))) : a/b → a ′/b ′

thus by adopting this inference rule in place of /M and /M ′ of Definition 5.3
on page 97, we can avoid this kind of redundancies.

Instead, the deductions in 6.3 and in 6.4 in Example 6.1 exhibit two different
structures. Deduction 6.1 follows the innermost reduction strategy: the most

Normal Derivations and Ambiguity 121

embedded formulas are contracted before the most external ones. Deduction
6.1 follows the outermost reduction strategy: the most external formulas are
contracted before the most embedded ones. We will consider redundant the
deductions following the outermost reduction. In other words, whenever two
derivations (or deductions) D1 and D2 are available and they differ only in that
D1 follows an innermost reduction, where D2 follows an outermost reduction,
we will say that D2 is redundant. Our choice is primarily dictated by the
fact that in the present context the innermost reduction is easy to control and
implement. Indeed we saw already, in Remark 5.4 on page 105 and in the
proof of Proposition 5.7, and will see below in more detail, that Definition 5.9
implements the innermost reduction. In the next chapter, we will examine also
the benefits of an outermost reduction strategy.

A final, trivial, case of redundancy is that of non-atomic identity axioms
which may also be derived through the rules of M0.

We start by redefining the set AX of Definition 5.4 so as to eliminate the
redundancies of the form discussed before. Let us write a D b for a sequent
a → b such that |a| > |b| or a ≡ b and a E b for a sequent a → b such that
|a| < |b| or a ≡ b. Moreover, to avoid repetitions in the following construction,
we define D̃ = E and Ẽ = D, and we use ♦ as a variable over D and E.

Definition 6.3. Let AX ? denote the smallest set such that:

1. AX ? contains for every atom a the axiom a → a.

2. AX ? contains AX 0.

3. AX ? is closed under the following rules, which we call M1:

a ♦ a ′ b ♦ b ′

a⊗ b ♦ a ′ ⊗ b ′
⊗M1

a ♦ a ′ b ′ ˜ ♦ b
b\a ♦ b ′\a ′

\M1

a ♦ a ′ b ′ ˜ ♦ b
a/b ♦ a ′/b ′

/M1

4. AX ? is closed under the following two rules:

a) if a D b ∈ AX ? and b D c ∈ AX 0 and a → b is not itself in AX 0 nor
is it derived by this same clause, then a → c ∈ AX ?.

b) if a E b ∈ AX 0 and b E c ∈ AX ? and b → c is not itself in AX 0 nor
is it derived by this same clause, then a → c ∈ AX ?.

We shall prove the equivalence of AX ? and AX . Observe that AX ? is more
restrictive than AX in its construction method. In particular, it assumes atomic

122 6.1. Eliminating redundancies

identity axioms and the monotonous cuts in clause 3 impose special conditions
to their premises, which are lacking from the corresponding clause in Definition
5.4. The proof of the following proposition shows that these extra requirements
can always be satisfied.

In the proof we make use of the notion of inner formula. This is the sub-
formula z of x such that z → x ∈ AX 0 if z → x is expanding or x → z ∈ AX 0

if x → z is reducing. For instance, a is the inner formula of (a ⊗ b)/b or of
b/(a\b) or of b ⊗ b\a. By replacement of the inner formula y for z in x, we
mean the replacement of the inner occurrence of y in x. For instance, the result
of the replacement of the inner formula a for b in (a⊗ a)/a is (b⊗ a)/a.

Proposition 6.1. The set of sequents AX ? is equivalent to the set of sequents
AX in Definition 5.4.

Proof. We prove that each set is included in the other.

AX ? ⊆ AX . Clearly, in AX we can derive everything that is derivable in AX ?.

AX ⊆ AX ?. Induction on the AX derivation:

1. Non-atomic identity axioms are derivable via M1.

2. AX 0 is common to AX and AX ?.

3. Rules M1 are a generalization of rules M0. Thus whatever is obtained
by M0 is derivable by using M1 with the identity as one of the premises.

4. Assume that a ♦ a ′ and b ′ ˜ ♦ b are in AX . Then by /M, also a/b ♦ a ′/b

and a ′/b ♦ a ′/b ′ are in AX . Then by clause 3 of Definition 5.4, also
a/b ♦ a ′/b ′ is in AX . By IH, a ♦ a ′ and b ′ ˜ ♦ b are in AX ? and
a/b ♦ a ′/b ′ is in AX ? by /M1.

5. One proves the other cases in which the premises of the monotonous cut
(in clause 3 of Definition 5.4) are obtained trough rules in M0 in a similar
way.

6. Assume that a E b ∈ AX 0 and b E c ∈ AX . There are the following
cases:

a) b E c ∈ AX 0. Then b is the inner formula of c. Thus by replacing in
c the inner formula b for a, we obtain c ′, such that a → c ′ ∈ AX 0.
Instead, c ′ → c is not in AX 0, although it is in AX . Hence, c ′ → c ∈
AX ? by IH and a → c is obtained in clause 4b of the construction
of AX ?.

b) b E c is derived from b E b ′ ∈ AX 0 and b ′ E c ∈ AX . The previous
case shows that there is another derivation of a E b ′. Then, by IH
and clause 4b it follows that a E c ∈ AX ?.

c) b E c is neither in AX 0 nor derived by clause 4b. Then a E c ∈ AX ?

by clause 4b of the construction of AX ?.

Normal Derivations and Ambiguity 123

7. The case in which a D b ∈ AX and b D c ∈ AX 0 is similar to the previous
one and we omit it.

As we discussed before, the construction method of AX ? is more regimented
than that of AX . Let us consider once more Examples 6.2 and 6.1. Clearly
the redundancy arising in Example 6.2 does not affect AX ? as the only way of
obtaining a/b → a ′/b ′ is by means of /M1. Concerning the redundancy in
Example 6.1, observe that (a⊗ a\c)/b⊗ b → a⊗ a\c and a⊗ a\c → c in

(a⊗ a\c)/b⊗ b, a⊗ a\c, c

are both in AX 0, hence clause 4a of Definition 6.3 does not apply. However,
(a⊗a\c)/b⊗b → c/b⊗b is not in AX 0 (although it is in AX ?), while c/b⊗b → c

is in AX 0. Thus we obtain (a ⊗ a\c)/b ⊗ b → c from these two premises by
clause 4a of the construction.

The final question is whether there are other kinds of redundancies affecting
the construction method of AX ?. In order to prove that this is not the case
we make use again of lambda terms. We give here the semantic labeling of the
rules M1 of AX ?.

v : a → a ′ u : b → b ′

λx.〈(v π1x), (u π2x)〉 : a⊗ b → a ′ ⊗ b ′
⊗M1

v : a → a ′ u : b ′ → b

λxy.(v (x (u y))) : b\a → b ′\a ′
\M1

v : a → a ′ u : b ′ → b

λxy.(v (x (u y))) : a/b → a ′/b ′
/M1

Let AX ? be defined as AX ? except for the fact that it is a multi-set4 rather than
a set. We refer to the extended AX ? as to the variant of AX ? extended with
lambda terms and we assume that all lambda terms are in normal form. We
state the following final result.

Proposition 6.2. Assume that t1 : a → c and t2 : a → c are in the extended
AX ?. Then t1 6= t2.

Proof. In first place, we observe that the rules in M1 do not engender spurious
ambiguity in themselves, although they may inherit it from their premises.
Thus, we shall look only at the transitions in AX 0. However, in this case
spurious ambiguity might arise only from monotonous cuts between premises
x → y and y → z in AX 0 which are excluded from AX ? by construction.

4A multi-set is a set-like object in which order is ignored, but multiplicity is explicitly
significant. Therefore, multisets {1, 2, 3} and {2, 1, 3} are equivalent, but {1, 1, 2, 3} and {1, 2, 3}
differ. One can also think of a multi-set as a list, the order of the elements of which is ignored.

124 6.1. Eliminating redundancies

Observe also that in general the normal derivation of a sequent a → c

consists in a reducing derivation of a sequent a → b ∈ AX ? and in the expanding
derivation of a sequent b → c ∈ AX ? from which a → c is obtained by cut. As
the construction of the two derivations which give the premises of the cut is
free from spurious ambiguity, also the derivation of a → c is.

Comparison with the expansion and reduction sets

Let us compare the construction method of AX ? and the procedure that we
presented in Definition 5.9 on page 103. We shall see that the two systems con-
struct deductions in exactly the same way. Hence that the procedure encoded
in Definition 5.9 is free from spurious ambiguity.

Let us begin with an example. We restate Definition 5.9 to be sensitive to
multiplicity.

Definition 6.4. Let us define functions e ′ and r ′, which are like e and r in
Definition 5.9, respectively, except for the fact that they use [] instead of { },
that is, list comprehension instead of set comprehension, and ++ instead of ∪,
that is, list concatenation instead of set union5.

We consider once more the formula (a⊗a\c)/b⊗b that we used to exemplify
the kind of redundancies that we want to eliminate.

Example 6.3. If we compute r ′((a⊗a\c)/b⊗b), we have the following trace
of the recursion.

r ′(a) = [a]

r ′(c) = [c] e ′(a) = [a]

r ′(a\c) = [a\c]

r ′(a⊗ a\c) = [a⊗ a\c, c] e ′(b) = [b]

r ′((a⊗ a\c)/b) = [(a⊗ a\c)/b, c/b] r ′(b) = [b]

r ′((a⊗ a\c)/b⊗ b) = [(a⊗ a\c)/b⊗ b, c/b⊗ b, a⊗ a\c, c]

We may observe that although both c/b ⊗ b and a ⊗ a\c are in the list
r ′((a⊗a\c)/b⊗b), only one occurrence of the formula c is in this list. In fact,
c is obtained at the root by contracting c/b⊗ b (which is also obtained at the
root, but by clause 2’a) of Definition 5.9). Instead, a⊗ a\c is obtained, again
at the root, by contracting (a ⊗ a\c)/b ⊗ b. As in the construction of AX ?,
we prevent the formula a ⊗ a\c from being the input for further contraction
in Definition 5.9 by computing only one cycle of pattern simplification, that is,
by simply mapping the set mon in clauses b) and c) of Definition 5.9 under
pattern contraction rather than computing the closure of the set mon under
contraction operations.

5Indeed, as the order of the elements is not important, we could use multisets rather than
lists. However, it makes no difference for the sake of the argument

Normal Derivations and Ambiguity 125

Remark 6.1. It is interesting to compare this situation to what might be the
case for the associative Lambek calculus. If we wish to build normal derivations
for this system, we could, for example, capture among the pattern contractions,
the expanding pattern a/b → (a/c)/(b/c). Thus, if a formula of the form
(a/c)/(b/c) were in the set mon, we would generate a/b, in the same way
as we generate c, if a/(c\a) is in mon in Definition 5.9. Observe, anyway,
that in this case a/b is not a subformula of (a/c)/(b/c), thus it may give rise
to a further contraction, if, for eample, a/b ≡ (a ′/x)/(b ′/x), and so forth.
Therefore, in this case, one cycle of pattern simplification would not be enough
and we should compute the closure of the set mon under the appropriate
contraction operations.

We conclude this section with the following result.

Proposition 6.3. The recognition procedure resulting from Proposition 5.8 is
free from spurious ambiguity.

Proof. As we have shown before, Definition 5.9 parallels the construction of
AX ? which is not affected by spurious ambiguity as we proved in Proposition
6.2. In particular, the functions e and r in Definition 5.9 exploit the rules M1

for the recursion, while the way in which the contraction mappings of the set
mon in clauses b) and c) of Definition 5.9 are applied, has the same effect as
the constraints that we imposed in clause 4 of Definition 6.3.

6.2 Enumerating readings

In this section, we examine the problem of calculating how many readings, that
is how many non-equivalent derivations, a sequent may have. [Van Benthem,
1991] proves that the number of non-equivalent readings for sequents of the
commutative Lambek calculus is finite. Obviously, this finiteness result applies
NL as well (every sequent has only a finite number of normal derivations).
Nonetheless, it appears that this number may soon become very big in relation,
for instance, to the length of the input sequent. Consider the example of
s/(n\s) ⊗ (s/(n\s))\s → s, discussed by [Hendriks, 1993] and [de Groote,
1999], among others. This sequent has the following two readings, presented
as deductions in ER.

(6.5) Subject wide scope:

s/(n\s) → s/(n\s)

s → s

s/(n\s) → s/(n\s)

n → s/(n\s)

(s/(n\s))\s → n\s

s/(n\s)⊗ (s/(n\s))\s → s/(n\s)⊗ n\s

s/(n\s)⊗ (s/(n\s))\s → s

126 6.2. Enumerating readings

(6.6) Verb wide scope:

s/(n\s)⊗ (s/(n\s))\s → s/(n\s)⊗ (s/(n\s))\s

s/(n\s)⊗ (s/(n\s))\s → s

De Groote concludes what follows.

Now it is easy to construct, from the above example, sequents with
an exponential number of possible proofs.

Let us examine this problem in more detail and try to find an upper bound to
such number. Consider once more the set AX 0 of the basic characteristic laws
of NL.

c/a⊗ a → c a⊗ a\c → c evaluation (e)

a → (a⊗ c)/c a → c\(c⊗ a) coapplication (c)

a → c/(a\c) a → (c/a)\c lifting (l)

Let us define the following operations, together with their symmetric forms,
possibly.

Definition 6.5. For a and b ranging over atoms, we define the following
operations:

φx(a)(b)(0) = a, for x ∈ {e, c, l}
φe(a)(b)(i + 1) = (φe(a)(b)(i))/b⊗ b

φc(a)(b)(i + 1) = ((φc(a)(b)(i))⊗ b)/b

φl(a)(b)(i + 1) = b/((φl(a)(b)(i))\b)

Each iteration of these operations introduces a pair of connectives. We can
simplify the notation if we adopt the following convention.

Notation 6.1. As a and b are arbitrary atoms, and constant in the iteration,
we write φx(n), x ∈ {e, c, l}, for φx(a)(b)(n).

We may observe the following property.

Remark 6.2. Let x ∈ {c, l} and n > 0. Then each of the following sequents is
provable.

φx(n) → φx(n + 1)

φx(n + 2) → φx(n + 1)

Similar patterns can be proved also for φe. In order to show this, we uniform
the construction by introducing the following abstraction.

Definition 6.6. Let n > 0 and m > 0. We write n
φx

→ m for

φx(n) → φx(m), if x ∈ {c, l}
φx(m) → φx(n), if x ∈ {e}

Normal Derivations and Ambiguity 127

This abstract notation allows us to write n
φ→ m for n

φx

→ m, the x ∈ {e, l, c}
being understood. We call φ-sequents such kinds of sequents. For example,

(6.7) 2
φc

→ 3 = ((a⊗ b)/b⊗ b)/b → (((a⊗ b)/b⊗ b)/b⊗ b)/b

(6.8) 2
φe

→ 3 = ((a/b⊗ b)/b⊗ b)/b⊗ b → (a/b⊗ b)/b⊗ b

We generalize the properties in Remark 6.2.

Proposition 6.4. Let n > 0. Then each of the following sequents is provable.

n
φ→ n + 1

n + 2
φ→ n + 1

Proof. Clearly, for every n > 0, n
φ→ n is provable. We consider only the case of

φe, the other cases being similar. Each step in the following deductions is either
based on the rules of the system ER from Definition 5.11 or on substitutions of
the previous definitions.

1. We first prove that n
φ→ n + 1.

n + 1
φe

→ n + 1
φe(n + 1) → φe(n + 1)

φe(n + 1) → φe(n)/b⊗ b

φe(n + 1) → φe(n)

n
φe

→ n + 1

2. We now prove that n + 2
φ→ n + 1.

n + 1
φe

→ n + 1
φe(n + 1) → φe(n + 1)

φe(n)/b⊗ b → φe(n + 1) b → b

(φe(n)/b⊗ b)/b → φe(n + 1)/b

φe(n)/b → φe(n + 1)/b b → b

φe(n)/b⊗ b → φe(n + 1)/b⊗ b

φe(n + 1) → φe(n + 2)

n + 2
φe

→ n + 1

In general, it seems to us that the only way to find out the actual number of
readings of a sequent is to count the number of proofs that can be constructed

128 6.2. Enumerating readings

for it. Consequently, we can know the exact degree of ambiguity of a sequent
only a posteriori. In certain special cases, however, it is possible to know the
number of readings of a sequent by just looking at its shape. This is indeed the
case for φ-sequents, as we shall see. Furthermore, we are going to show that
φ-sequents of length n provide an upper bound for the number of readings of
any sequent of length n. This gives us the possibility to provide an a priori
upper bound for the degree of ambiguity of any sequent of a given length.

Let us define the following count.

Definition 6.7. Let n > 0 and m > 1.

ρ(n,m) = 1, if n ≡ 0 or m ≡ 1
ρ(n + 1,m + 1) = ρ(n,m + 1) + ρ(n + 1,m)

We now prove that the function ρ counts exactly the number of readings of
φ-sequents. We write |a → c|ρ for the number of different proofs of a → c.

Proposition 6.5. Let n > 0 and m > 1. Then

|n
φ→ m|ρ = ρ(n,m)

Proof. In the proof, we examine the case of φc, the other cases being similar.

Case n ≡ 0 and m > 1. By induction hypothesis, |0
φ→ m − 1|ρ = 1. There is

only the following way to obtain a
φ→ m.

0
φc

→ m − 1
a → φc(m − 1) b → b

a⊗ b → φc(m − 1)⊗ b b → b

(a⊗ b)/b → (φc(m − 1)⊗ b)/b

a → (φc(m − 1)⊗ b)/b

0
φc

→ m

Case m ≡ 1 and n > 0. Then, by induction hypothesis, |n − 1
φ→ 1|ρ = 1. The

only way of proving n
φ→ 1 is the following.

n − 1
φc

→ 1
φc(n − 1) → (a⊗ b)/b b → b

φc(n − 1)⊗ b → (a⊗ b)/b⊗ b

φc(n − 1)⊗ b → a⊗ b b → b

(φc(n − 1)⊗ b)/b → (a⊗ b)/b

n
φc

→ 1

Normal Derivations and Ambiguity 129

Case n > 0 and m > 1. There are two possibilities of obtaining n
φc

→ m.

1.
n

φc

→ m − 1
φc(n) → φc(m − 1) b → b

φc(n)⊗ b → φc(m − 1)⊗ b b → b

(φc(n)⊗ b)/b → (φc(m − 1)⊗ b)/b

φc(n) → (φc(m − 1)⊗ b)/b

n
φc

→ m

2.
n − 1

φc

→ m

φc(n − 1) → φc(m)

φc(n − 1) → (φc(m − 1)⊗ b)/b b → b

φc(n − 1)⊗ b → (φc(m − 1)⊗ b)/b⊗ b

φc(n − 1)⊗ b → φc(m − 1)⊗ b b → b

(φc(n − 1)⊗ b)/b → (φc(m − 1)⊗ b)/b

n
φc

→ m

Therefore, |n
φ→ m|ρ = |n

φ→ m− 1|ρ + |n− 1
φ→ m|ρ. By induction hypothesis,

|n
φ→ m − 1|ρ = ρ(n,m − 1) and |n − 1

φ→ m|ρ = ρ(n − 1,m). Hence,

|n
φ→ m|ρ = ρ(n − 1,m) + ρ(n,m − 1).

Theorem 6.5 gives rise to the table in Figure 6.1, where we enumerate
readings for φ-sequents. For n

φ→ m, with 0 6 n 6 7 and 0 < m 6 7, we write
n in the leftmost column and m in the topmost row. Notice that this is the
well known Pascal’s triangle6.

φ→ 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7
2 1 3 6 10 15 21 28
3 1 4 10 20 35 56 84
4 1 5 15 35 70 126 210
5 1 6 21 56 126 252 462
6 1 7 28 84 210 462 924
7 1 8 36 120 330 792 1716

Figure 6.1: Readings of φ-sequents.

6I wish to thank Michael Moortgat for telling me the name of this beautiful figure.

130 6.2. Enumerating readings

Remark 6.3. The count ρ(n,m) can be formulated in terms of the binomial
coefficient.

ρ(n,m) =

(
n + m − 1

m − 1

)
=

(n + m − 1)!
n!(m − 1)!

Coming back to the issue of finding an upper bound to the number of
readings of a NL sequent, let us introduce the following notation. We denote
Φn the set of φ-sequents of length n. Moreover, let dΦne be the integer m such
that s ∈ Φn, |s|ρ = m and for all s ′ ∈ Φn, m > |s ′|ρ (in other words, dΦne is
the highest number of readings that a φ-sequents of length n can have). We
state the following result.

Proposition 6.6. Let a → c be given. If |a → c| = n, then |a → c|ρ 6 dΦne.

Proof. We observe that the monotonicity rules do not engender ambiguity.
There remain only the elements of AX to be considered. φ-sequents are in-
stances of sequents in AX . Their shape allows to match literals and connectives
inside them, introducing the highest degree of ambiguity. Consider, as an ex-
ample, the φ-sequent 1

φc

→ 2. This has two readings, namely

((a⊗ b)/b⊗ b)/b → ((a⊗ b)/b⊗ b)/b

(a⊗ b)/b → ((a⊗ b)/b⊗ b)/b

and
(a⊗ b)/b → (a⊗ b)/b

a → (a⊗ b)/b b → b

a⊗ b → (a⊗ b)/b⊗ b b → b

(a⊗ b)/b → ((a⊗ b)/b⊗ b)/b

Any sequent resulting from a φ-sequent by changing atoms, for example (a⊗
b)/b → ((a ⊗ b)/b ⊗ c)/c, has a smaller number of readings. If we replace a
formula for an atom, the length of the sequent increases. Changing connectives
destroys the shape of φ-sequents.

In conclusion, we have the following result for the number of readings of
arbitrary sequents.

Proposition 6.7. Let a → c be given. Let |a → c| = n and m = n
2 −1. Then,

- if m ≡ 0, then
|a → c|ρ 6 1

- otherwise,

|a → c|ρ 6 max { ρ(i, j) | 0 6 i & 0 < j & i + j = m }

Proof. The case m = 0 accounts for the case in which a and c are atoms. The
other case follows immediately from Propositions 6.5 and 6.6.

Normal Derivations and Ambiguity 131

6.3 Conclusion

In this chapter, I have refined Kandulski’s notion of normal derivation by elim-
inating redundancies from the construction. I proved that the procedure in
Definition 5.9 and hence the recognition procedure in Proposition 5.8 is a
redundancy-free theorem prover for NL.

In exploring the properties of the theorem prover arising from Proposition
5.8, I observed the pleasant progression of Figure 6.1. The link between number
of readings of NL sequents and binomial coefficient substantially strengthens
the previous results of [van Benthem, 1991] and [Tiede, 1999a]. This result also
clarifies [de Groote, 1999] claim about the exponential number of readings of
NL sequents.

Chapter 7

Complexity

The non-associative Lambek calculus with product can be parsed in poly-
nomial time as proved in [de Groote, 1999; Buszkowski, 2005; Bulinśka,

2006]. The proofs of polynomiality in [Buszkowski, 2005] and [Bulinśka, 2006]
rely on the subformula property which restricts the search space to sequents
made of subformulas of the input sequent. The proof in [de Groote, 1999]
depends on the subformula property and on structure sharing. We have seen
that in general, normal derivations do not respect the subformula property. For
example, the derivation in Example 6.1 on page 118 passes through a formula
which is not a subformula of the input sequent.

Although the procedure encoded in Definition 5.9 may work fairly well even
with complex and highly ambiguous sequents, as it is not affected by spurious
ambiguity, we will see in Section 7.1 that it is not polynomial. I will redefine
the expansion and reduction functions in such a way that their search space is
structured as a graph. However, we will see that even enhanced with structure
sharing, this approach does not guarantee polynomiality. As we mentioned
before, the main drawback of the expansion and reduction method is that the
process of derivation construction does not respect the subformula property.

Then I will present a calculus for NL, closely related to the system ER,
which makes it possible to find deductions in accordance with the subformula
property and maintains some of the pleasant properties of ER. A charted
algorithm based on this system will be described, I will prove its correctness
and that it recognizes sequents of NL in polynomial time. I will calculate a
polynomial time of O(n5), where n is the length of the input sequent. Such
limit is lower that those calculated in the works discussed before.

Finally, we will see how this polynomial recognition algorithm for two-
formula sequents can be applied to parsing multi-formula sequents, that is
sequents whose antecedent structure is not given.

134 7.1. Charted expansion/reduction algorithm

7.1 Charted expansion/reduction algorithm

One could easily define the agenda-driven chart-based algorithm implementing
Definition 5.9. Let a polarized formula be a pair of a boolean and a formula.
We define the following operation returning the set of polarized subformulas of
a given polarized formula.

Definition 7.1. Polarized subformulas.

ϕ :: (Bool,F) → {(Bool,F)}

ϕ (p,a) = {(p,a)}, if a is an atom.
ϕ (p,a⊗ b) = {(p,a⊗ b)} ∪ϕ(p,a) ∪ϕ(p,b)

ϕ (p,a/b) = {(p,a/b)} ∪ϕ(p,a) ∪ϕ(p,b)

ϕ (p,b\a) = {(p,b\a)} ∪ϕ(p,a) ∪ϕ(p,b)

where 0 = 1 and 1 = 0.

The main component of the program is given below.

Algorithm 7.1. Agenda-driven chart-based variant of Definition 5.9.

Input: a two-formula sequent a → c.

Output: a boolean value: 1, if `NL a → c, 0 otherwise.

1. type Agenda := [(Bool,F)]. Initialization of the agenda: let (y :ys) be
the result of mapping to a sorted list the set ϕ(0,a) ∪ϕ(1, c)1.

2. type Chart := [((Bool,F), {F})]. Initialization of the chart: zs := [].

3. exhaust-agenda :: (Chart,Agenda) → (Chart,Agenda)

exhaust-agenda (zs, []) = (zs, [])
exhaust-agenda (zs,y :ys) =

exhaust-agenda (y ′ :zs,ys)
where

y ′ := consequences y zs

4. Let ((0,a),as), ((1, c), cs) ∈ zs at the end of step 3. Then,

`NL a → c iff as ∩ cs 6= ∅

1That is (y : ys) contains one occurrence of each z ∈ ϕ(0,a) ∪ϕ(1,c) in complexity
increasing order.

Complexity 135

Step by step analysis of Algorithm 7.1

Step 1 declares the type and the initial value of the agenda variable (y :ys): a
sorted list of polarized formulas which will be used to drive the inference process
in step 3. Step 2 declares the type and initial value of the chart variable zs.
The chart is empty at the beginning. The functions r and e in Definition 5.9
can be seen as instances of a function f taking in input a boolean, a formula
and returning a set of formulas, in such a way that f 1 = e and f 0 = r. We
omit the details of the implementation of the function consequences of type
(Bool,F) → Chart → ((Bool,F), {F}) as they are not particularly relevant and
describe informally what it should do in Definition 7.2.

Definition 7.2. Let Algorithm 7.1 be applied to a sequent x → y. For each
polarized subformula (p,a]b) of x → y, the function consequences in the
routine exhaust-agenda should perform the following steps:

1. Retrieve from the chart the elements ((p1,a),A) and ((p2,b),B) where
p1 and p2 are the appropriate polarities for (p,a]b) in input2.

2. Use the sets of formulas A and B to calculate the set of formulas X infer-
able for (p,a]b). The sets A and B contain the premises. For example,
for (p,a]b) ≡ (1,a/b) we calculate, in a way parallel to Definition 5.9:

X = let mon be { a ′/b ′ | a ′ ∈ A & b ′ ∈ B } in
mon

∪
{ c | (c⊗ b ′)/b ′ ∈ mon }

∪
{ c | a ′/(c\a ′) ∈ mon }

3. Return ((p,a]b),X).

Observe that consequences is not a recursive function as recursion is im-
plemented by exhaust-agenda. In fact, when a polarized formula a]b (for sim-
plicity, we omit the polarity) is the current input of consequences, we know
in advance that the polarized formulas a and b have already been computed,
as they are shorter than the formula a]b.

Proposition 7.1. If the function consequences is implemented according to
Definition 7.2, then at each iteration of exhaust-agenda in Algorithm 7.1, we
have:

1. ((1, x),Y) ∈ zs and y ∈ Y iff y ∈ e(x).

2. ((0, x),Y) ∈ zs and y ∈ Y iff y ∈ r(x).

2More precisely: if] = ⊗, then p1 = p = p2, if] = /, then p1 = p and p2 = p, and if
] = \, then p1 = p and p2 = p.

136 7.2. A calculus for the subformula property

Proof. The only difference between the recognition strategy of Definition 5.9
and that of Algorithm 7.1 is that while in the first the search space is organized
as a tree, in the second it is organized as a graph. Sharing is obtained simply by
building the agenda as a sorted list from the set of polarized subformulas of the
input sequent. Thus, multiple occurrences of the same polarized subformula are
computed only once. The complexity increasing order of the agenda, guarantees
that at each iteration of exhaust-agenda the premises needed to derive the
consequences of the current input formula are already in the chart.

As we explained in the introduction, the main drawback of Definition 5.9
and that of Algorithm 7.1 is that they do not respect the subformula property.
If we look once more at derivation 6.1 on page 118, in order to prove (a ⊗
a\c)/b⊗b → c, we pass through the formula c/b⊗b, which is not a subformula
of the input sequent. Observe that in Definition 5.9, the calculation of the size
of the set mon involves the product of the size of the subproblem solutions, see
[Le Nir, 2004]. The situation is not different in case of Algorithm 7.1. Since,
as we saw in Chapter 6, a formula may give rise to a number of reduced forms
which is exponential on its length, this indicates that the procedure is not
polynomial. Suppose that we want to calculate the number of inferences for a
formula a]b. This involves retrieving from the chart the inferences of a and
of b. After we have recovered (a,A) and (b,B) from the chart, the generation
of (a]b,X) will take |A| × |B| + k operations of O(1), where k is the number
of contracted forms for the a ′]b ′’s such that a ′ ∈ A and b ′ ∈ B. Multiplying
this reasoning for the number of subformulas of the input sequent gives an
exponential growth of space and time.

In our tests of Algorithm 7.1 and Definition 5.9, we could indeed observe
such an exponential explosion, although this happened with artificially con-
structed complex sequents which would not occur in actual linguistic practice.
We believe indeed that for linguistic applications the procedure 5.9, eventually
implemented as in Algorithm 7.1, would be perfectly adequate.

In the next sections, we show how the recognition method of Definition 5.9
can be generalized in such a way that deductions respecting the subformula
property can always be found. This will be the basis for building a polynomial
algorithm for NL recognition.

7.2 A calculus for the subformula property

We call G the following axiomatization of NL.

Definition 7.3. The system G.

- Identities:
Axioms Cut

a → a
a → b b → c

a → c

Complexity 137

- Binary Rules:

Product Rule:
a → a ′ b → b ′

a⊗ b → a ′ ⊗ b ′

Application:
a → a ′ b → a ′\c

a⊗ b → c

a → c/b ′ b → b ′

a⊗ b → c

Monotonicity:
a ′ → a b → b ′

b ′\a ′ → b\a

a ′ → a b → b ′

a ′/b ′ → a/b

Lifting:
b → a ′/c a ′ → a

c → b\a

b → c\a ′ a ′ → a

c → a/b

Coapplication:
b → b ′ b ′ ⊗ c → a

c → b\a

b → b ′ c⊗ b ′ → a

c → a/b

The system G is closely related to the system ER. The monotonicity and
cut rules are common to both systems. Instead, the other rules of G are all
derivable in two steps in ER.

- Application:

a → a ′ b → a ′\c

a⊗ b → c

a → a ′ b → a ′\c

a⊗ b → a ′ ⊗ a ′\c

a⊗ b → c

- Lifting:

b → a ′/c a ′ → a

c → b\a

a ′ → a b → a ′/c

(a ′/c)\a ′ → b\a

c → b\a

- Coapplication:

b → b ′ b ′ ⊗ c → a

c → b\a

b ′ ⊗ c → a b → b ′

b ′\(b ′ ⊗ c) → b\a

c → b\a

138 7.2. A calculus for the subformula property

Furthermore, normal derivations can be constructed in G. For example, the
clause for e(a/b) would become as follows.

e(a/b) = let as be e(a) and bs be r(b) in

{ a ′/b ′ | a ′ ∈ as & b ′ ∈ bs }

∪
{ c | c⊗ b ′ ∈ as & b ′ ∈ bs }

∪
{ c | a ′ ∈ as & c\a ′ ∈ bs }

However, our primary interest in G is that it will allow us to always find
deductions respecting the subformula property. Let us consider some examples
of violation of the subformula property in normal deductions of G.

Example 7.1.

Permutation: Consider the following example, the formula within the box is
not a subformula of the conclusion.

a → a a\b → a\b

a⊗ a\b → b c → c

(a⊗ a\b)/c → b/c c → c

(a⊗ a\b)/c⊗ c → b

In G, there is an equivalent deduction which respects the subformula property:

(a⊗ a\b)/c → (a⊗ a\b)/c c → c

(a⊗ a\b)/c⊗ c → a⊗ a\b

a → a a\b → a\b

a⊗ a\b → b

(a⊗ a\b)/c⊗ c → b

Percolation: the cut is replaced with two new cuts of smaller degree, so that
the cut formula disappears and the new cut formulas may be subformulas of
the root sequent.

a → a

b → b

a\b → a\b b → b

a → b/(a\b)

(b/(a\b))\b → a\b

a⊗ (b/(a\b))\b → a⊗ a\b

a\b → a\b b → b

a → b/(a\b) a\b → a\b

a⊗ a\b → b/(a\b)⊗ a\b

a⊗ (b/(a\b))\b → b/(a\b)⊗ a\b

The variant respecting the subformula property is obtained by moving the cut

Complexity 139

upwards.

b → b

a\b → a\b b → b

a → b/(a\b)

(b/(a\b))\b → a\b a\b → a\b

(b/(a\b))\b → a\b

a → a

a\b → a\b b → b

a → b/(a\b)

a → b/(a\b)

a⊗ (b/(a\b))\b → b/(a\b)⊗ a\b

We observe, that both these transformations rely on the use of the cut
rule. Furthermore, while they return deductions that respect the subformula
property, these new deductions may no longer be normal, in Kandulski’s sense.
This is the case in the second example. Thus if we want to be able to find
deductions respecting the subformula property, we should relax the conditions
on normality. We introduce the notion of quasinormal deduction.

Definition 7.4. A deduction D in G is quasinormal either if D is normal or if
the last step of D is a binary rule of G applied to the conclusions of quasinormal
deductions D1 and D2.

According to this definition, normal deductions are a subset of quasinormal
deductions. For instance, the deduction respecting the subformula property
in the second example in 7.1 is quasinormal (though not normal), while the
deduction in Example 6.2 is normal and respects the subformula property.

As in the case of normal deductions, we can see the application each rule as
triggered by a polarized subformula of the goal sequent. We call such formula
the trigger of the inference rule.

Proposition 7.2. Let a → b and b → c, with a 6= c, be deducible in G with
quasinormal deductions. If |b| > |a| and |b| > |c|, then there is a b ′, |b ′| < |b|,
such that a → b ′ and b ′ → c are deducible with quasinormal deductions in G.

We will prove now that among all quasinormal deductions of a given sequent
we can always find one that respects the subformula property, that is one whose
formulas are all subformulas of the goal sequent. Observe that, since the trigger
is by definition a subformula of the input sequent, we should only verify that
the other formula in the conclusion is also a subformula of the input sequent.

We prove the subformula property for G. We write σ(x) for the set of the
subformulas of x and σ(x → y) for the set of subformulas of x → y. Let Σ be
a set of formulas, we write x →Σ y, if x → y has a deduction D in G such that
all formulas appearing in D belong to Σ.

Proposition 7.3. Let `G a → c and Σ := σ(a → c). Then a →Σ c.

Proof. Induction on the quasinormal deduction of a → c. We work bottom-up.
This means that in constructing a deduction for a → c, with Σ = σ(a → c),
we proceed from premises to conclusion and consider the first introduction of a
sequent x → y, such that either x or y does not belong to Σ. As the axioms are

140 7.3. NL in polynomial time

obviously in Σ, we may assume, without loss of generality, that the premises
contain formulas in Σ. Instead, the conclusion x → y contains a formula which
triggers the inference and is therefore in Σ, and another formula which is not in
Σ. Such assumption immediately excludes from the analysis the rules of lifting,
coapplication and application. Consider lifting for all.

b → a ′/c a ′ → a

c → b\a

Such rule is triggered by the formula b\a in the conclusion, which is therefore
in Σ. By assumption, the premises are made of formulas in Σ. Therefore, the
new formula c in the conclusion is also in Σ as it occurs as a subformula of one
of the premises. Coapplication and application have the same behaviour. The
cut rule does not create problems either, as no new formula is introduced in
the conclusion. There remain only the monotonicity rules.

Consider the following instance of monotonicity, as triggered by the succedent
formula b\a.

a ′ → a b → b ′

b ′\a ′ → b\a

Then b ′\a ′ /∈ Σ. Therefore, b ′\a ′ should cancel with a positive occurrence of
b ′\a ′, derived from an inference of the following kind,

a ′′ → a ′ b ′ → b ′′

b ′′\a ′′ → b ′\a ′

whose trigger is b ′′\a ′′, to generate b ′′\a ′′ → b\a. We know that a ′ →
a,b → b ′,a ′′ → a ′ and b ′ → b ′′ are made of formulas in Σ. Thus, we obtain
b ′′\a ′′ → b\a, avoiding to pass through b ′\a ′, in the following way3.

a ′′ → a ′ a ′ → a

a ′′ → a

b → b ′ b ′ → b ′′

b → b ′′

b ′′\a ′′ → b\a

The other cases are similar and we omit them.

7.3 NL in polynomial time

In the previous section, we proved that in the system G we can always find
derivations respecting the subformula property, that is derivations whose for-
mulas are all subformulas of the root sequent. As we said before, this is the
key property which may guarantee polynomiality of the recognition procedure.
We wish to remark that derivations respecting the subformula property may

3Observe that in this way, the same conclusion can be obtained twice: once as triggered
by the antecedent and a second time as triggered by the succedent.

Complexity 141

not be normal in the sense of the previous chapters. However this does not
represent a problem for recognition.

We define now an agenda-driven chart-based algorithm for proving two-
formula sequents based on G and drawing inferences respecting the subformula
property.

Algorithm 7.2.

Input: a two-formula sequent a → c.

Output: a boolean value: 1, if `NL a → c, 0 otherwise.

1. type Agenda := [(Bool,F)]. Initial value of the agenda: let (y : ys) be
the result of mapping to a sorted list the set ϕ(0,a) ∪ϕ(1, c).

2. type Chart := {Seq}. Initial value of the chart: zs := ∅.

3. type Subform := {F}. Σ := σ(a → c), is the set of the subformulas of
a → c.

4. exhaust-agenda :: Subform → (Chart,Agenda) → (Chart,Agenda)

exhaust-agenda Σ (zs, []) = (zs, [])
exhaust-agenda Σ (zs, (p,y) :ys) =

exhaust-agenda Σ (zs ′,ys)
where

ys ′ := infer (p,y) Σ zs

cs := cut p ys ′ zs

zs ′ := ys ′ ∪ cs ∪ zs

5. Recognition: `NL a → c iff a → c ∈ zs after step 4.

At each iteration of step 4, the new inferences are produced by the functions
infer and cut. As we saw in the proof of Proposition 7.3, the subformula
property for G essentially relies on the use of the cut rule. The function cut
takes a boolean and two sets of sequents as arguments and returns the set of
sequents derivable by cut with the elements of the two sets as premises. The
polarity determines which set gives which premise.

- cut :: Bool → {Seq} → Chart → {Seq}

cut 0 ys zs = { a → c | a → b ∈ ys & b → c ∈ zs }

cut 1 ys zs = { a → c | a → b ∈ zs & b → c ∈ ys }

Let us write the set of sequents generated by each subclause of infer as proof
trees, for readability. This means that an output like

a ′ → c ′ ∈ as . . .
a → c if p

142 7.3. NL in polynomial time

should be read as

{ a → c | a ′ → c ′ ∈ as & . . . & p }

The function infer takes in input a polarized formula, the set of subformulas
and the set of sequents currently in the chart and returns a set of sequents. In
a way analogous to Definition 5.9, if the input formula is positive, this will be
the succedent of the output sequents, if it is negative, it will be the antecedent.
Furthermore, we require the antecedent (resp. succedent) of a positive (resp.
negative) instance of infer to be in the set of subformulas in the case of
the monotonicity inferences. However, unlike in Algorithm 7.1, no particular
restriction is imposed to the premises.

- infer :: (Bool,F) → Subform → Chart → {Seq}

infer (,a) = { a → a }, if a is an atom.

infer (1,a ′ ⊗ b ′) Σ zs =
a → a ′ ∈ zs b → b ′ ∈ zs

a⊗ b → a ′ ⊗ b ′
if a⊗ b ∈ Σ

infer (0,a⊗ b) Σ zs =
a → a ′ ∈ zs b → b ′ ∈ zs

a⊗ b → a ′ ⊗ b ′
if a ′ ⊗ b ′ ∈ Σ

∪
a → c/b ′ ∈ zs b → b ′ ∈ zs

a⊗ b → c

∪
a → a ′ ∈ zs b → a ′\c ∈ zs

a⊗ b → c

infer (1,b\a) Σ zs =
a ′ → a ∈ zs b → b ′ ∈ zs

b ′\a ′ → b\a
if b ′\a ′ ∈ Σ

∪
b → a ′/c ∈ zs a ′ → a ∈ zs

c → b\a

∪
b → b ′ ∈ zs b ′ ⊗ c → a ∈ zs

c → b\a

infer (0,b ′\a ′) Σ zs =
a ′ → a ∈ a b → b ′ ∈ zs

b ′\a ′ → b\a
if b\a ∈ Σ

Complexity 143

The proof of Proposition 7.3 clarifies why the subformula test is applied only
to the monotonicity inferences in Algorithm 7.2: in any other case, we know
in advance that the formulas in the conclusion are subformulas of the goal
sequent, since one formula is the trigger of the rule and the other occurs as a
subformula of one of the premises.

We prove the correctness of Algorithm 7.2 by proving first its soundness
and then its completeness.

Proposition 7.4. If Algorithm 7.2 is applied to a sequent a → c, then, upon
termination, if x → y is in the chart variable zs, then `G x → y.

Proof. This follows immediately from the correspondence between the inference
rules of G and those of Algorithm 7.2, and from the bottom-up approach of
Algorithm 7.2 which is consistent with the interpretation of the rules of G.
Thus all the sequents in the chart are derivable in G.

Completeness of Algorithm 7.2 requires that every provable sequent a → c

such that a is a negative subformula and c is a positive subformula of the goal
sequent is in the chart at the end of the computation. Observe that we can
be more restrictive and require that a → c is in chart either at the a-iteration
or at the c-iteration of exhaust-agenda, where by x-iteration we mean the
iteration triggered by the polarized formula x of the agenda. Observe however
that if |a| < |c|, then at the a-iteration a → c will not be in the chart. Thus,
we shall prove that a → c is in the chart at the c-iteration. This forces us to
claim the existence of a subformula b of the goal sequent, |b| < |a| or b ≡ a,
such that at the a-iteration a → b is put in the chart and at the c-iteration
b → c is found by infer and a → c is obtained by cut. We call such a formula
b bridge formula. Let us write x+, for (1, x) (a positive formula) and x−, for
(0, x) (a negative formula).

Definition 7.5. Let a → c be a sequent provable in G. A bridge formula for
a → c is a formula b, such that b− ∈ ϕ(a−) and b+ ∈ ϕ(c+) and `G a → b

and `G b → c.

What we are calling bridge formula is similar to what [Roorda, 1991, 1994]
calls interpolant . However, a bridge formula for a sequent a → c is a subfor-
mula of a → c, which is not necessarily the case for Roorda’s interpolants4.

Clearly, for each provable sequent a → c, there is always at least one bridge
formula. Let us give a few examples.

Example 7.2.

For a⊗ a\b → b, b is a bridge formula (as ` a⊗ a\b → b and ` b → b).

4We observe that Roorda’s interpolation is more closely related to the procedure in
Proposition 5.8: given a sequent a → c the formulas in r(a) ∩ e(c) are all interpolants in
the sense of Roorda.

144 7.3. NL in polynomial time

For a ⊗ a\b → c/(b\c), b is a bridge formula (as ` a ⊗ a\b → b and ` b →
c/(b\c)).

For a⊗(b/(a\b))\b → b/(a\b)⊗a\b, both a⊗(b/(a\b))\b and b/(a\b)⊗a\b

are bridge formulas.

We now prove the existence of bridge formulas for every derivable sequent.

Proposition 7.5. Let a → c be given and Σ = σ(a → c). Let D be a
quasinormal deduction of a → c such that all formulas appearing in D belong
to Σ. Then there is a bridge formula b for a → c.

Proof. Induction on D.

- If D consists of an axiom a → a, then we take a.

- If D is a normal, reducing deduction, then we take c.

- If D is a normal, expanding deduction, then we take a.

- If D is normal, then there is a formula b such that a
r→ b and b

e→ c.
The, b is a bridge formula for a → c

- If D ends in
a ′ → c ′ c ′′ → a ′′

a ′/a ′′ → c ′/c ′′

then, we have a bridge formula b ′/b ′′ for a ′/a ′′ → c ′/c ′′ made out of
some bridge formulas b ′ for a ′ → c ′ and b ′′ for c ′′ → a ′′.

- The other cases obtained trough monotonicity are similar.

- If D ends in lifting
c ′′ → a\c◦ c◦ → c ′

a → c ′/c ′′

then there is an assumption a → a ′ among those from which c ′′ → a\c◦

is obtained. By induction hypothesis, we have a bridge formula b for
a → a ′. Then b is a bridge formula for a → c ′/c ′′.

- The case of application and coapplication are similar.

Given polarized formulas x and y in the agenda, we write x ≺ y, if x occurs
in the agenda before y.

Proposition 7.6. Let a sequent a → c be given. Then, if `G x → y, x−,y+ ∈
ϕ(0,a)∪ϕ(1, c), then x → y, is in the chart variable zs either at the x-iteration
or at the y-iteration of the procedure exhaust-agenda.

Proof. Induction on the deduction of x → y.

Complexity 145

1. x → y is the conclusion of monotonicity.

x ′ → y ′ y ′′ → x ′′

x ′/x ′′ → y ′/y ′′

There are two possibilities:

a) y ≺ x, we have the following subcases:

i. x ′, x ′′ ≺ y, then at the y-iteration x ′ → y ′ and y ′′ → x ′′ are in
the chart zs and the conclusion is obtained by infer y zs.

ii. y ≺ x ′, x ′′, then there are bridge formulas z ′ and z ′′ such that,
at the y-iteration, z ′ → y ′ and y ′′ → z ′′ are in the chart.
Thus, at the x ′-iterations, we obtain x ′ → z ′ and also x ′ → y ′

by cut, while, at the x ′′-iterations, we obtain z ′′ → x ′′ and also
y ′′ → x ′′ by cut. We conclude x ′/x ′′ → y ′/y ′′ at the x-iteration
by infer x zs.

iii. The other cases are similar.

b) x ≺ y, dual of y ≺ x.

2. The other monotonicity cases are similar.

3. x → y is the conclusion of lifting.

y ′′ → x\y◦ y◦ → y ′

x → y ′/y ′′

We shall consider the following cases.

a) y ≺ x, that is, x has not yet been computed. Then, there is a bridge
formula z, such that the conclusion of

y ′′ → z\y◦ y◦ → y ′

z → y ′/y ′′

is in the chart zs at the y-iteration by infer y zs. Thus x → z is
in the chart at the x-iteration. We conclude x → y by cut at the
x-iteration.

b) x ≺ y, we shall consider the following subcases.

i. y ′′ ≺ x, then for some bridge formula z, y ′′ → z\y◦ is in the
chart at the y ′′-iteration and x → z at the x-iteration. We
obtain x → y ′/y ′′ at the y-iteration by cut.

ii. Otherwise, y ′′ → x\y◦ and y◦ → y ′ are already in the cart
at the y-iteration, and the conclusion x → y is obtained by
infer y zs.

4. Application and coapplication are similar.

146 7.4. Connection to parsing

5. x → y is the conclusion of cut.

x → z z → y
x → y

Then z is a bridge formula.

We examine now the complexity of Algorithm 7.2.

Proposition 7.7. If Algorithm 7.2 is applied to a sequent a → c of length
n, then the function exhaust-agenda terminates after executing O(n5) oper-
ations.

Proof. The number of polarized subformulas (size of the agenda) is bounded
by n. Due to the subformula property, the size of the chart is bounded by
n2. Thus, at each iteration of exhaust-agenda, the application of the rules
cut and infer may involve O(n4) steps. Since there are O(n) iterations, we
conclude that exhaust-agenda will compute O(n5) operations.

7.4 Connection to parsing

Algorithm 7.2 terminates after computing all possible inferences among polar-
ized subformulas of the input sequent, as we proved in Proposition 7.6. However
the procedure can be generalized as to apply to an agenda containing any list
of polarized formulas. The result is, again, the set of all derivable sequent made
of formulas in the agenda. Let us see how this set may be used in relation to
parsing, that is to find a derivation of a sequent a1, . . . ,an → c whose structure
is not given.

Consider the following rules.

Definition 7.6. Generalized rules:

Generalized cancellation rules.

Γ → c/a ′ ∆ → a

Γ∆ → c
if `NL a → a ′

Γ → a ∆ → a ′\c

Γ∆ → c
if `NL a → a ′

Product rule.
Γ → a ∆ → b
Γ , ∆ → a⊗ b

Given the rules in 7.6 we can define NL recognition as follows.

Complexity 147

Proposition 7.8. Let a1, . . . ,an → c be a sequent provable in NL. Then, for
some c ′ such that `NL c ′ → c, the sequent a1, . . . ,an → c ′ can be proved only
by means of the rules given in Definition 7.6.

The following proposition connects recognition of two formula sequents, as
defined in Algorithm 7.2 to parsing.

Proposition 7.9. Let a1, . . . ,an → c be a sequent provable in NL. Let
us apply exhaust-agenda, from Algorithm 7.2, to the agenda containing the
sorted list obtained from ϕ(a−

0)∪ . . .∪ϕ(a−
n)∪ϕ(c+) and to the empty chart.

Let Z be the chart variable after termination of exhaust-agenda. Then, for
some c ′ such that c ′ → c ∈ Z, the sequent a1, . . . ,an → c ′ can be proved
through the following rules:

Generalized cancellation rules.

Γ → c/a ′ ∆ → a

Γ∆ → c
if a → a ′ ∈ Z

Γ → a ∆ → a ′\c

Γ∆ → c
if a → a ′ ∈ Z

Generalized product rule.

Γ → a ′ ∆ → b ′

Γ∆ → a⊗ b

{
if a ′ → a ∈ Z

and b ′ → b ∈ Z

More in general, Algorithm 7.2 can perform a form of preprocessing on the
input grammar.

Given a set of sequents Z, let us call AB⊗Z the deductive system whose
inference rules are the generalized cancellation and product rules of Proposition
7.9.

Proposition 7.10. Let G be a NL grammar 〈Vt, s,Lex,NL〉. Let us apply
the function exhaust-agenda, from Algorithm 7.2, to the agenda containing
the sorted list obtained from ϕ(a−

0) ∪ . . . ∪ ϕ(a−
n), where w → ai ∈ Lex

for all i, 0 6 i 6 n and to the empty chart. Let Z be the chart variable
after termination of exhaust-agenda. Then, we can construct a new grammar
G ′ = 〈Vt, s,Lex,AB⊗Z〉, such that Lt(G) = Lt(G

′).

We call the set Z in the preceding construction grammar inference set, gis
for short.

Example 7.3. We propose once more grammar A6.

n∗ → n | s/(n\s) | tv\(s/(n\s))\s | (s/(n\s)⊗ tv)\s

tv∗ → tv

hv∗ → (s/(n\s))\s

148 7.4. Connection to parsing

The gis of A6 is the following set of sequents:

{ n → n,
s → s,
n\s → n\s,
(n\s)/n → (n\s)/n,
s/(n\s) → s/(n\s),
n → s/(n\s),
(s/(n\s))\s → n\s,
(s/(n\s))\s → (s/(n\s))\s,
s/(n\s)⊗ (n\s)/n → s/(n\s)⊗ (n\s)/n,
(s/(n\s)⊗ (n\s)/n)\s → (s/(n\s)⊗ (n\s)/n)\s,
((n\s)/n)\(s/(n\s))\s → ((n\s)/n)\(s/(n\s))\s }

As we know that the inference engine of Algorithm 7.2 generates only se-
quents made of subformulas of the formulas in the agenda, we may easily cal-
culate the size of the grammar inference set.

Proposition 7.11. Let a NL grammar G = 〈Vt, s,Lex,NL〉 be given. Let Z

be the gis of G and m the size of the set containing all subformulas of the
formulas appearing in the lexicon Lex. Then

1. |Z| = O(m2),

2. Z can be constructed in O(m5) steps.

Proof. The statement in 1 depends on the fact that all sequents in Z are made
of formulas which are subformulas of the formulas in Lex. The statement in 2
is a consequence of Proposition 7.7.

The asymptotic bounds stated in Proposition 7.11 are pleasant properties
of the grammar inference set. We may also observe that many elements of
the gis are identities, whose interaction with the rules is entirely predictable
without looking at the gis (in case of identity sequents in the side conditions,
the generalized rules boil down to the AB⊗ rules). Thus we may prefer to
prune the grammar inference set of all sequents of the form x → x and move
the identity test among the side conditions of the generalized rules given above.
We omit the implementation these simple operations.

Polynomial parsing for NL

All the parsing systems for AB⊗ grammars developed in Chapter 3 can easily
be modified to work with AB⊗ grammars based on a grammar inference set Z.
We formulate here the system NLMix.

Let us formulate, first of all, the deductive system ÃB
⊗
Z .

Complexity 149

Definition 7.7. Let a set of sequents Z be given. We call ÃB
⊗
Z the triple

〈F, ÃX
?
,Cut ′〉 such that ÃX

?
is as in ÃB

⊗
and Cut ′ is the following rule

Γ → a ∆[a ′] → c

∆[Γ] → c

{
if a → a ′ ∈ Z

or a = a ′

On the basis of ÃB
⊗
Z we define the parsing system NLMix as follows.

Definition 7.8. Let G be a NL grammar. Let Z be the grammar inference set
of G and G ′ the ÃB

⊗
Z grammar corresponding to G according to the construc-

tion in Proposition 7.10 on page 147. The system NLMix is a triple 〈I,A,R〉
such that I, A and R are as in AB⊗

Mix except for the fact that R has the follow-
ing ε-scanning and completion rules in place of the ε-scanning and completion
rules of AB⊗

Mix.

(i,∆ . a ′ Γ → c, j)

(i,∆ a ′ . Γ → c, j)
if `G′ ε → a ′

(i, Γ a ′ / ∆ → c, j)

(i, Γ / a ′ ∆ → c, j)
if `G′ ε → a ′

(i,∆ . a ′ Γ → c,k) (k,Λ → a, j)
(i,∆ a ′ . Γ → c, j)

{
if a → a ′ ∈ Z

or a = a ′

(i,Λ → a,k) (k,∆ a ′ / Γ → c, j)
(i,∆ / a ′ Γ → c, j)

{
if a → a ′ ∈ Z

or a = a ′

7.5 Conclusion

This chapter presented parsing methods for the non-associative Lambek cal-
culus. The result of polynomial parsability for this logic is not new. However
we wish to remark the following benefits of our methods with respect to the
results that can be found in the literature.

[De Groote, 1999] proved that two-formula sequents of NL can be recognized
in polynomial time. On the other hand, [de Groote, 1999] and [de Groote and
Lamarche, 2002] gives only vague specifications on how the recognition proce-
dure should be implemented. A special requirement of de Groote’s method is
that “the search space is organized as a DAG rather than as a tree”. In this re-
spect, we explicitly described how we can define an agenda-driven chart-based
procedure (see Chapter 4) for logical parsing. Furthermore, de Groote gives
no degree of polynomiality, although [Moot, 2002] states that [de Groote and
Lamarche, 2002] “prove that, given a bracketed input, the decision problem for
NL can be solved in O(n6) time”. This calculation is based on the number of

150 7.5. Conclusion

possible subformulas and subcontexts available at each application of the con-
text rules. Hence our recognition procedure for two-formula sequents is more
efficient than one based on contexts.

[Buszkowski, 2005] and [Bulinśka, 2006] give a constructive method for prov-
ing NL sequents in polynomial time. Our approach presents similarities to these
works. In fact, here as there, recognition of a sequent a1, . . . ,an → c passes
through the construction of a set of sequents which allows the application of
extended context-free parsing methods. However, our grammar inference set
is smaller than the set of basic sequents employed by Buszkowski and Bulinśka
as it consists only of two-formula sequents made of polarized subformulas of
formulas of the lexicon and can be constructed much faster than the O(n18)
of Buszkowski and the O(n12) of Bulinska5. Our recognition method guaran-
tees that once the gis is constructed, what has to be done once and for all,
the complexity of recognition is O(m2n3), where m is the size of the lexicon,
calculated as in Proposition 7.11 on page 148.

A final remark concerns the extension of our polynomial recognition al-
gorithm to the system NG presented at the end of Section 2.8, that is NL

extended with symmetric operators. Clearly, the addition to G of the dual
rules, in Definition 7.9 below, preserves all the properties which were relevant
to the design of Algorithm 7.2, namely goal orientation of rule application and
subformula property.

Definition 7.9. Dual rules:

a → a ′ b → b ′

a⊕ b → a ′ ⊕ b ′

a ′ → a a ′ ; c → b

c → a⊕ b

c� b ′ → a b ′ → b

c → a⊕ b

a ′ → a b → b ′

b ′ ; a ′ → b ; a

a ′ → a b → b ′

a ′ � b ′ → a� b

a ′ � c → b a → a ′

a ; c → b

c ; a ′ → b a → a ′

a� b → c

b ′ → b a → b ′ ⊕ c

b ; a → c

b ′ → b a → c⊕ b ′

a� b → c

5In fact, Buszkowski and Bulinśka consider NL extended with non-logical axioms and
empty antecedent, respectively. However, even without such extensions their sets of basic
sequents would be bigger than the gis. Essentially, this depends on the stronger notion of
subformula that we adopted in our construction.

Complexity 151

The extension of Algorithm 7.2 to this new system is trivial and we conclude
this chapter with the following result.

Proposition 7.12. Two-formula sequents of the system NG can be recognized
in polynomial time.

Chapter 8

Conclusion and Further Lines
of Research

This book is a study of the logical and computational properties of structure-
preserving categorial grammars, namely non-associative Lambek gram-

mars with product and Ajdukiewicz–Bar-Hillel grammars with product. Chap-
ter 3 presents parsing systems for AB grammars with product which are imple-
mented in Chapter 4 as cubic time parsing algorithms. These chapters show
two important facts. In the first place, that the product introduction rule can
be handled elegantly and efficiently. Secondly that, due to the use of abstract
inference schemes, categorial parsing can be more efficient than context-free
parsing.

In Chapter 5, we examined a simple procedure for automatic construction
of normal deductions in the non-associative Lambek calculus. This procedure
is based on two functions which operate by recursively contracting suitable
patterns. We have seen that the problem of proving a two formula sequent
a → c boils down to that of finding a formula b such that b ∈ r(a) and b ∈ e(c).
The procedure extends to the more general problem of proving a ‘multi-formula’
sequent a1 . . .an → c: if `NL a1 . . .an → c, then `AB⊗ a ′1 . . .a ′n → c ′, where
a ′i ∈ r(ai), 1 6 i 6 n and c ′ ∈ e(c).

In Chapter 6, we have addressed the problem of spurious ambiguity, and
shown that the procedure in Definition 5.9 is not affected by this problem.
As the algorithms for AB⊗ are not affected by this problem either, we have
indirectly designed a general normal form parser for non-associative Lambek
grammars.

The expansion and reduction method in Definition 5.9 and in Proposition
5.8 enabled us to determine the degree of ambiguity of NL sequents, which we
stated in Proposition 6.7 on page 130.

Chapter 7 has shown how NL parsing can be executed in polynomial time.
This result is not new. However, our approach has some advantages over the
previous ones. With respect to [de Groote, 1999], it provides a fully explicit

154

procedure both for two-formula and for multi-formula sequents. With respect
to [Buszkowski, 2005], we lowered notably the polynomial bound.

An obvious question is whether the recognition methods developed in this
thesis can be extended to other logics and in particular to logics with structural
rules.

Normal derivations had been proposed in the second half of the 1980s (by
Buszkowski [1986] and Kandulski [1988]) as a method for proving context-
freeness of NL grammars. Since at that time the problem of context-freeness
of the grammars based on the associative Lambek calculus was still open, it
was also reasonable to try to extend the methods used for the non-associative
system to the associative calculus. However, no attempt in this direction can be
found in the literature. On one hand, it might be the case that a normalization
parallel to the one for NL was not possible for the calculus of [Lambek, 1958].
On the other, that, while possible, it was not enough to prove context-freeness.

Indeed, we believe that it is possible to extend the normalization procedure
to logical systems with structural rules. As in the case of NL, the expedient
would be to adopt a non-minimal axiomatization, which allows to interpret
the derivation process as divided into a reducing component and an expanding
component. However, further research should be dedicated to this topic.

Bibliography

Adams, S. (1993). Functional pearls: Efficient sets–a balancing act. Journal of
Functional Programming, 3(4):553–561.

Ades, A. and Steedman, M. (1982). On the order of words. Linguistics and
Philosophy, 4:517–558.

Aho, A. and Ullman, J. (1972). The Theory of Parsing, Translation and Com-
piling, volume 1: Parsing. Prentice-Hall, INC.

Ajdukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica,
1:1–27.

Andreoli, J.-M. (1992). Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):197–347.

Andreoli, J.-M. (2001). Focussing and proof construction. Annals of Pure and
Applied Logic, 107(1-3):131–163.

Baldridge, J. (2002). Lexically Specified Derivational Control in Combinatory
Categorial Grammar. PhD thesis, University of Edinburgh.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description.
Language, 29:47–58.

Bar-Hillel, Y., Gaifman, C., and Shamir, E. (1964). On categorial and phrase
structure grammars. In Bar-Hillel, Y., editor, Language and Information.
Selected Essays on their Theory and Application, pages 99–115. Addison-
Wesley, Reading, MA.

Bernardi, R. (2002). Reasoning with polarity in categorial type logic. PhD
thesis, UiL-OTS, Utrecht.

Bernardi, R. and Moortgat, M. (2007). Continuation semantics for symmetric
categorial grammar. In Proceedings of the Fourteenth Workshop on Logic,
Language, Information and Computation (WoLLIC’2007), Rio de Janeiro.

Blackburn, P. and Bos, J. (2003). Computational semantics for natural lan-
guage. Course notes for NASSLLI 2003, Indiana University.

156

Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal Logic. Cambridge
University Press, Cambridge, England.

Bulinśka, M. (2006). P-TIME decidability of NL1 with assumptions. In
FG2006: The 11th Conference on Formal Grammar, pages 29–38.

Buszkowski, W. (1986). Generative capacity of the nonassociative Lambek
calculus. Bulletin of the Polish Academy of Sciences, Mathematics, 34:507–
516.

Buszkowski, W. (1987). The logic of types. In Srzednicki, J., editor, Initiatives
in Logic, pages 180–206. Martinus Nijhoff, Dodrecht.

Buszkowski, W. (1988). Gaifman’s theorem on categorial grammars revisited.
Studia Logica, 47:23–33.

Buszkowski, W. (1997). Mathematical linguistics and proof theory. In van
Benthem, J. and ter Meulen, A., editors, Handbook of Logic and Language,
pages 683–736. Elsevier, Amsterdam.

Buszkowski, W. (2005). Lambek calculus with nonlogical axioms. In Casadio,
C., Scott, P., and Seely, R., editors, Language and Grammar: Studies in
Mathematical Linguistics and Natural Language, pages 77–93. CSLI Lecture
Notes 168, Stanford.

Carpenter, B. (1996). The turing-completeness of multimodal categorial gram-
mars.

Carpenter, B. and Morrill, G. (2005). Switch graphs for parsing type logical
grammars. In Proceedings of the International Workshop on Parsing Tech-
nology, IWPT05, Vancouver.

Chomsky, N. (1957). Syntactic Structures. Mouton and Co., The Hague.

Chomsky, N. (1959). On certain formal properties of grammars. Information
and Control, 2(2):137–167.

Cormen, T., Leiserson, C., and Rivest, R. (1990). Introduction to Algorithms.
MIT Press.

Curry, H. B. and Feys, R. (1958). Combinatory Logic I. North-Holland, Ams-
terdam.

Damas, L. and Milner, R. (1982). Principal type-schemes for functional pro-
grams. In POPL, pages 207–212.

de Groote, F. (1999). The non-associative Lambek calculus with product in
polynomial time. In Murray, N. V., editor, Lecture Notes in Artificial Intel-
ligence, volume 1617. Springer-Verlag.

Bibliography 157

de Groote, P. and Lamarche, F. (2002). Classical non-associative Lambek
calculus. Studia Logica, 71(3):355–388.

Došen, K. (1988). Sequent systems and groupoid models, part 1. Studia Logica,
47:353–386.

Došen, K. (1992). A brief survey of frames for the Lambek calculus. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 38:179–187.

Earley, J. (1968). An Efficient Context-Free Parsing Algorithm. PhD thesis,
Carnegie-Mellon University, Pittsburgh, PA.

Earley, J. (1970). An efficient context-free parsing algorithm. Comm. ACM,
13:94–102.

Finkel, A. and Tellier, I. (1996). A polynomial algorithm for the membership
problem with categorial grammar. Theoretical Computer Science, 164:207–
221.

Gazdar, G., Klein, E., Pullum, G., and Sag, I. (1985). Generalized Phrase
Structure Grammar. Basil Blackwell.

Graham, S. L., Harrison, M., and Ruzzo, W. L. (1980). An improved context-
free recognizer. ACM Trans. Program. Lang. Syst., 2(3):415–462.

Grishin, V. N. (1983). On a generalization of the Ajdukiewicz-Lambek system.
Studies in Nonclassical Logics and Formal Systems, pages 315–334.

Hankin, C. (2004). An Introduction to Lambda Calculi for Computer Scientist.
King’s College Publications.

Harrison, M. A. (1978). Introduction to Formal Language Theory. Addison-
Wesley, Reading, Massachussets.

Hendriks, H. (1993). Studied Flexibility: Categories and Types in Syntax and
Semantics. PhD thesis, ILLC, Amsterdam.

Hendriks, H. (1999). The logic of tune. A proof-theoretic analysis of intonation.
In Lecomte, A., editor, Logical Aspects of Computational Linguistics, New
York. Springer.

Hepple, M. (1994). Discontinuity and the Lambek calculus. In Proceedings
of the 15th International Conference on Computational Linguistics (COL-
ING’94), pages 1235–1239.

Hepple, M. (1996). A compilation-chart method for linear categorial deduction.
In Proceedings of COLING-96, pages 537–542, Copenhagen.

Hepple, M. (1999). An Earley-style predictive chart parsing method for Lambek
grammars. In Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (ACL’99), pages 465–472, Maryland.

158

Heylen, D. (1999). Types and Sorts. Resource logic for feature checking. PhD
thesis, UiL-OTS, Utrecht.

Hindley, J. R. (1997). Basic Simple Type Theory. Cambridge University Press.

Howard, W. (1980). The formulas-as-types notion of construction. In To
H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formal-
ism, pages 479–490. Academic Press.

Jones, S. P., editor (2003). Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press.

Kandulski, M. (1988). The equivalence of nonassociative Lambek categorial
grammars and context-free grammars. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik, 34:41–52.

Kasami, T. (1965). An efficient recognition and syntax analysis algorithm for
context-free languages. Technical Report AFCRL-65-758, Air Force Cam-
bridge Res. Lab., Bedford Mass.

König, E. (1994). A hypothetical reasoning algorithm for linguistic analysis.
Journal of Logic and Computation, 4(1):1–19.

Kraak, E. (1995). French object clitics: a multimodal analysis. In Morrill, G.
and Oehrle, R. T., editors, Formal Grammar.

Kruijff, G.-J. M. and Baldridge, J. (2003). Multi-modal combinatory categorial
grammar. In EACL, pages 211–218.

Kurtonina, N. (1995). Frames and labels. A modal analysis of categorial infer-
ence. PhD thesis, UiL-OTS, Utrecht.

Kurtonina, N. and Moortgat, M. (1997). Structural control. In Blackburn,
P. and de Rijke, M., editors, Specifying Syntactic Structures, pages 75–113.
CSLI, Stanford.

Lambek, J. (1958). The mathematic of sentence structure. American Mathe-
matical Monthly, 65(3):154–170.

Lambek, J. (1961). On the calculus of syntactic types. In Jacobson, R., editor,
Proceedings of the Twelfth Symposium in Applied Mathematics, volume XII,
pages 166–178.

Lambek, J. (1993). Logic without structural rules (another look at cut elimina-
tion). In Schroeder-Heister, P. and Dosen, K., editors, Substructural Logic,
pages 179–206. Claredon Press, Oxford.

Le Nir, Y. (2003a). From proof trees in lambek calculus to ajdukiewicz bar-hillel
elimination binary trees. Journal of Research on Language and Computation,
1:3-4:181–201.

Bibliography 159

Le Nir, Y. (2003b). Structures des analyses syntaxiques catégorielles. Applica-
tion à l’inférence grammaticale. PhD thesis, Université de Rennes 1, Rennes.

Le Nir, Y. (2004). From NL grammars to AB grammars. In Moortgat, M. and
Prince, V., editors, CG2004 Proceedings, Montpellier-France.

Montague, R. (1970). English as a formal language. In Linguaggi nella Società
e nella Tecnica, pages 189–224. Edizioni di Comunità, Milan. Reprinted in
[?].

Moortgat, M. (1988). Categorial Investigations. Logical and Linguistic Aspects
of the Lambek Calculus. Foris, Dordrecht.

Moortgat, M. (1996). Multimodal linguistic inference. Journal of Logic, Lan-
guage and Information, 5(3/4):349–385.

Moortgat, M. (1997). Categorial type logics. In van Benthem, J. and ter
Meulen, A., editors, Handbook of Logic and Language, pages 93–177. Elsevier,
Amsterdam.

Moortgat, M. (1999). Constants of grammatical reasoning. In G.Bouma, Hin-
richs, E., Kruijff, G.-J., and Oehrle, R. T., editors, Constraints and Resources
in Natural Language Syntax and Semantics, pages 195–219. CSLI, Stanford.

Moortgat, M. (2007). Symmetries in natural language syntax and semantics:
the Lambek-Grishin calculus. In Proceedings of the Fourteenth Workshop
on Logic, Language, Information and Computation (WoLLIC’2007), Rio de
Janeiro.

Moortgat, M. and Oehrle, R. (1997). Proof nets for the grammatical base
logic. In Abrusci, V. M. and Casadio, C., editors, Proceedings of the IV
Roma Workshop, Roma. Bulzoni Editore.

Moot, R. (2002). Proof Nets for Linguistic Analysis. PhD thesis, UiL-OTS,
Utrecht.

Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Signs. Kluwer,
Dordrecht.

Morrill, G. (1996). Memoisation of categorial proof nets: Parallelism in cat-
egorial processing. In Abrusci, V. M. and Casadio, C., editors, Proofs and
Linguistic Categories, Proceedings 1996 Roma Workshop, pages 157–169,
Bologna. Cooperativa Libraria Universitaria Editrice.

Nederhof, M.-J. and Satta, G. (2004). Tabular parsing. In Martin-Vide, C.,
Mitrana, V., and Paun, G., editors, Formal Languages and Applications,
Studies in Fuzziness and Soft Computing 148, pages 529–549. Springer.

Okasaki, C. (1998). Purely Functional Data Structures. Cambridge University
Press, Cambridge, England.

160

Okasaki, C. (1999). Red-black trees in a functional setting. Journal of Func-
tional Programming, 9(4):471–477.

Pentus, M. (1993). Lambek grammars are context free. In Proceedings of the
8th Annual IEEE Symposium on Logic in Computer Science, pages 429–433,
Los Alamitos, California. IEEE Computer Society Press.

Pentus, M. (1995). Models for the Lambek calculus. Annals of Pure and Applied
Logic, 75(1–2):179–213.

Pentus, M. (2003). Lambek calculus is NP-complete. CUNY Ph.D. Program in
Computer Science Technical Report TR–2003005, CUNY Graduate Center,
New York. http://www.cs.gc.cuny.edu/tr/techreport.php?id=79.

Pentus, M. (2006). Lambek calculus is np-complete. Theoretical Computer
Science, 357(1-3):186–201.

Pereira, F. C. N. and Shieber, S. N. (1987). Prolog and Natural-Language
Analysis. Center for the Study of Language and Information, Stanford, Cal-
ifornia.

Pereira, F. C. N. and Warren, D. H. D. (1983). Parsing as deduction. In
Proceedings of 21st Annual Meeting of the Association for Computational
Linguistics. MIT.

Retoré, C. (2005). The logic of categorial grammars – lecture notes. Research
Report 5703, INRIA. 108 pp.

Roorda, D. (1991). Resource logics: proof-theoretical investigations. PhD thesis,
University of Amsterdam, Amsterdam.

Roorda, D. (1994). Interpolation in fragments of Classical Linear Logic. Journal
of Symbolic Logic, 59(2):419–444.

Savateev, Y. (2006). The derivability problem for Lambek calculus with one
division.

Shieber, S. M., Schabes, Y., and Pereira, F. C. N. (1995). Principles and
implementation of deductive parsing. Journal of Logic Programming, 24:3–
36.

Sikkel, K. (1993). Parsing Schemata. PhD thesis, Department of Computer
Science, University of Twente, Enschede.

Sikkel, K. (1998). Parsing schemata and correctness of parsing algorithms.
Theoretical Computer Science, 199.

Sikkel, K. and Nijholt, A. (1997). Parsing of context-free languages. In Rozen-
berg, G. and Salomaa, A., editors, Handbook of formal languages, Vol. II.
Springer Verlag, Berlin.

Bibliography 161

Steedman, M. (2000a). Information structure and the syntax-phonology inter-
face. Linguistic Inquiry, 31(4):649–689.

Steedman, M. (2000b). The Syntactic Process. The MIT Press.

Szczerba, M. (1997). Representation theorems for residuated groupoids. In
Retoré, C., editor, Proceedings of the 1st International Conference on Logi-
cal Aspects of Computational Linguistics (LACL-96), volume 1328 of LNAI,
pages 426–434, Berlin. Springer.

Tiede, H.-J. (1998). Lambek calculus proofs and tree automata. In Moortgat,
M., editor, LACL, volume 2014 of Lecture Notes in Computer Science, pages
251–265. Springer.

Tiede, H.-J. (1999a). Counting the number of proofs in the commutative Lam-
bek calculus. In Gerbrandy, J., Marx, M., de Rijke, M., and Venema, Y.,
editors, JFAK. Essays Dedicated to Johan van Benthem on the Occasion of
his 50th Birthday. Amsterdam University Press, Amsterdam.

Tiede, H.-J. (1999b). Deductive Systems and Grammars: Proofs as Grammat-
ical Structures. PhD thesis, Indiana University.

van Benthem, J. (1991). Language in Action: Categories, Lambdas and Dy-
namic Logic. The MIT Press.

van Eijck, J. (2004). Deductive parsing in Haskell.

Vermaat, W. (2005). The logic of variation. A cross-linguistic account of wh-
question formation. PhD thesis, UiL-OTS, Utrecht.

Vijay-Shanker, K. and Weir, D. J. (1990). Polynomial time parsing of combi-
natory categorial grammars. In ACL, pages 1–8.

Vijay-Shanker, K. and Weir, D. J. (1994). The equivalence of four extensions
of context-free grammars. Mathematical Systems Theory, 27.

Weir, D. J. and Joshi, A. K. (1988). Combinatory categorial grammars: Gen-
erative power and relationship to linear context-free rewriting systems. In
Meeting of the Association for Computational Linguistics, pages 278–285.

Younger, D. H. (1967). Recognition and parsing of context-free languages in
time n3. Information and Control, 10:189–208.

Zielonka, W. (1981). Axiomatizability of Ajdukiewicz-Lambek calculus by
means of cancellation schemes. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 27:215–224.

Index

AB calculus, 16
associative, 17
extended, 28
with product, 20

Algebraic semantics, 23

Bottom-up proof search, 102

Categorial lambda term, 29
Chart, 77
Curry-Howard, 24

Deduction, 8
Deductive parser, 47

AB⊗
Mix, 67

CYK
AB⊗, 51
CF, 48

Earley
AB⊗, 59
CF, 56

Deductive system, 7
extended, 28

Derivation, 9

ER system, 112
Expanding sequent, 100
Expansion set, 103

Frame semantics, 23

Gaifman conversion, 46
Generation, 8

in CG, 16

Generative power, 38
Goal-directed proof search, 73
Grammar inference set, 147

Interpolation, 112, 143

Lambda calculus, 24
typed, 25

Lambek calculus
non-associative, 21
product-free, 19

Lambek-Grishin system, 37
Language, 5
Lexical conversion, 114
Linear, 29
List, 5
Logical ambiguity, 128

Multi-modal setting, 35

Non-determinism, 95
Normal derivation, 101
Normalization, 100

Order, 15

Pascal triangle, 129
Polynomial parsing, 114, 146
Polynomial proof search, 141

Reading, 128
Reducing sequent, 100
Reduction set, 103
Residuated groupoid, 23

Sequent, 8

Index 163

Spurious ambiguity
in CF grammar, 13
in NL grammars, 118

Structural description, 12
Structural rule, 34
Subformula property, 138

Tabular parsing, 80
CYK, 81
Earley, 86

Top-down proof search, 102
Tree, 8
Type-logical grammar, 34

Unary operators, 36, 112

Samenvatting

Dit boek bestudeert de logische en computationele eigenschappen van structuur
behoudende categoriale grammatica’s.

In het eerste deel van het boek worden zogenaamde “chart parsing” metho-
des besproken voor niet-associatieve categoriale grammatica’s in de stijl van
Ajdukiewicz en Bar-Hillel. Deze methodes worden in eerste instantie gentro-
duceerd als deductieve zinsontleders, daarmee wordt bedoeld dat ze worden
gezien als deductieve systemen die gebruik maken van de lineaire volgorde van
syntactische categorien. Vervolgens worden deze methodes geherformuleerd als
efficinte zinsontledingsalgoritmes. Een belangrijk aspect is de formulering van
efficinte methodes om met product formules in het zinsontleedproces om te
kunnen gaan.

Het tweede deel van dit boek gaat over categoriale grammatica’s in de stijl
van Lambek. In hoofdstuk 5 wordt een simpele en elegante methode voor
automatische herkenning geformuleerd. In de navolgende hoofdstukken worden
de syntactische en semantische eigenschappen van deze methode besproken.
Een verrassend resultaat is de relatie tussen het aantal semantische lezingen
en de binominale cofficint, die wordt besproken in hoofdstuk 6. De resultaten
voor polynominaliteit, in hoofdstuk 7, zijn gebaseerd op expliciete algoritmes
die generalisaties maken en eerdere resultaten verbeteren.

De algoritmes in dit boek representeren de eerste volledige toepassing van
“chart parsing”-technieken op logische grammatica’s. Ze kunnen worden be-
schouwd als de grondslag voor de toekomstige ontwikkeling van rijkere logische
grammatica’s.

Curriculum vitae

Matteo Capelletti was born in Cesena, Italy, on the 4th of January, 1977. After
scientific high-school, he studied Philosophy at the University of Bologna with
a curriculum in history of philosophy and logic. He graduated in 2001 with a
thesis on formal methods for natural language analysis.

In 2003, Matteo Capelletti went to the Netherlands, with a Marie Curie
grant first and then with a Marco Polo grant, for research on type-logical
grammars at UiL OTS, Utrecht University. In 2004, he was enrolled in the
international PhD program at Utrecht University. During the PhD, Matteo
Capelletti taught several courses on parsing and functional programming for
CKI (Cognitive Artificial Intelligence) students at the Department of Philoso-
phy at Utrecht University.

	Contents
	to1Introduction
	Overview

	to2Background
	Languages
	Grammars
	Context-free grammars
	Categorial grammars
	AB grammars
	Lambek style categorial grammars
	Product categories

	Lambda terms
	Typed lambda calculus
	Extended categorial grammars
	Multi-modal type-logical grammars
	Generative power of categorial grammars
	Conclusion

	toIAutomated Reasoning
	to3Deductive Parsers
	Problems
	Deductive parsers
	Bottom-up parsers
	AB grammars
	Product rules

	Earley style parsing
	Earley system for CF
	The Earley parser for AB grammars

	Mixed regime
	Approaching Lambek systems
	Conclusion

	to4Implementations
	Agenda-driven chart-based procedure
	Tabular parsing
	Tabular CYK algorithm
	The Earley algorithm
	The Earley algorithm for CF grammars
	The Early algorithm for AB

	Conclusion

	toIIThe Non-associative Lambek Calculus
	to5Normal Derivations in NL
	Alternative formulations of NL
	Normal derivations
	Automatic recognition
	Expansion and reduction
	Remarks on expansion and reduction
	Extensions
	The underlying deductive system

	Connection to parsing
	Conclusion

	to6Normal Derivations and Ambiguity
	Eliminating redundancies
	Enumerating readings
	Conclusion

	to7Complexity
	Charted expansion/reduction algorithm
	A calculus for the subformula property
	NL in polynomial time
	Connection to parsing
	Conclusion

	to8Conclusion and Further Lines of Research
	Bibliography
	Index

