1,128 research outputs found

    Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 B.C.--2017) and another new proof

    Full text link
    In this article, we provide a comprehensive historical survey of 183 different proofs of famous Euclid's theorem on the infinitude of prime numbers. The author is trying to collect almost all the known proofs on infinitude of primes, including some proofs that can be easily obtained as consequences of some known problems or divisibility properties. Furthermore, here are listed numerous elementary proofs of the infinitude of primes in different arithmetic progressions. All the references concerning the proofs of Euclid's theorem that use similar methods and ideas are exposed subsequently. Namely, presented proofs are divided into 8 subsections of Section 2 in dependence of the methods that are used in them. {\bf Related new 14 proofs (2012-2017) are given in the last subsection of Section 2.} In the next section, we survey mainly elementary proofs of the infinitude of primes in different arithmetic progressions. Presented proofs are special cases of Dirichlet's theorem. In Section 4, we give a new simple "Euclidean's proof" of the infinitude of primes.Comment: 70 pages. In this extended third version of the article, 14 new proofs of the infnitude of primes are added (2012-2017

    pp-adic quotient sets

    Get PDF
    For ANA \subseteq \mathbb{N}, the question of when R(A)={a/a:a,aA}R(A) = \{a/a' : a, a' \in A\} is dense in the positive real numbers R+\mathbb{R}_+ has been examined by many authors over the years. In contrast, the pp-adic setting is largely unexplored. We investigate conditions under which R(A)R(A) is dense in the pp-adic numbers. Techniques from elementary, algebraic, and analytic number theory are employed in this endeavor. We also pose many open questions that should be of general interest.Comment: 24 page

    Markoff-Rosenberger triples in geometric progression

    Full text link
    Solutions of the Markoff-Rosenberger equation ax^2+by^2+cz^2 = dxyz such that their coordinates belong to the ring of integers of a number field and form a geometric progression are studied.Comment: To appear in Acta Mathematica Hungaric

    On geometric progressions on Pell equations and Lucas sequence

    Get PDF
    We consider geometric progressions on the solution set of Pell equations and give upper bounds for such geometric progressions. Moreover, we show how to find for a given four term geometric progression a Pell equation such that this geometric progression is contained in the solution set. In the case of a given five term geometric progression we show that at most finitely many essentially distinct Pell equations exist, that admit the given five term geometric progression. In the last part of the paper we also establish similar results for Lucas sequences

    Perfect powers in products of terms of elliptic divisibility sequences

    Full text link
    Diophantine problems involving recurrence sequences have a long history and is an actively studied topic within number theory. In this paper, we connect to the field by considering the equation \begin{align*} B_mB_{m+d}\dots B_{m+(k-1)d}=y^\ell \end{align*} in positive integers m,d,k,ym,d,k,y with gcd(m,d)=1\gcd(m,d)=1 and k2k\geq 2, where 2\ell\geq 2 is a fixed integer and B=(Bn)n=1B=(B_n)_{n=1}^\infty is an elliptic divisibility sequence, an important class of non-linear recurrences. We prove that the above equation admits only finitely many solutions. In fact, we present an algorithm to find all possible solutions, provided that the set of \ell-th powers in BB is given. (Note that this set is known to be finite.) We illustrate our method by an example.Comment: To appear in Bulletin of Australian Math Societ
    corecore